Effect to the Surface Composition in Ultrasonic Vibration-Assisted Grinding of BK7 Optical Glass
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Setup
- ηij—the protrusion height at the measuring point of the ith row and the jth column;
- M—total number of rows in the measurement area;
- N—total number of columns in the measurement area.
3. Results and Discussions
3.1. Analysis of the Effects in Surface Morphologies and Surface Roughness
3.1.1. Effect of Grinding Parameters on Surface Morphologies and Surface Roughness
3.1.2. Effect of Ultrasonic Amplitude on Surface Morphologies and Surface Roughness
3.2. Effect of Grinding and Ultrasonic Parameters on Surface Composition
3.3. Analysis of the Changes in Surface Morphologies and Surface Roughness
4. Conclusions
- Machining parameters significantly influence the surface roughness (Sa). The surface roughness (Sa) and pits sizes increase with the increase in feed rate and grinding depth, and decrease with the increase in the spindle rotation speed and ultrasonic vibration amplitude.
- Increase in spindle rotation speed and ultrasonic vibration amplitude, decrease in grinding depth and feed rate could increase the proportion of ductile removal and reduce the proportion of brittle removal. The introduction of ultrasonic vibration would largely inhibit the powder removal of submicron crumbs and reduce the proportion of powdered removal of micron-sized pieces. At the same time, the proportion of the ductile removal of willow leaf shaped removal could be increased, and the proportion of the brittle removal of sector shaped removal could be reduced.
- Compared to feed rate, grinding depth has the dominant positive effect on the surface roughness, the reason is the difference in the effect degree of these two parameters to powdering removal proportion. The sharp decrease in proportion of brittle fracture and powdering removal is the reason of the initial obvious influence of spindle rotation speed on surface roughness. Surface roughness decreased obviously in both initial and later stages of increase in ultrasonic amplitude, the reason is the notable increase in proportion of ductile removal and the inhibition of powdering removal.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Sa | Surface roughness (nm) |
n | Spindle rotation speed (rpm) |
Vf | Feed rate (mm/min) |
ap | Grinding depth (μm) |
A | Ultrasonic amplitude (μm) |
References
- Xie, J.; Deng, Z.J.; Liao, J.Y.; Li, N.; Zhou, H.; Ban, W.X. Study on a 5-axis precision and mirror grinding of glass freeform surface without on-machine wheel-profile truing. Int. J. Mach. Tools Manuf. 2016, 109, 65–73. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, C.; Wen, X.L.; Gong, Y.D. Modeling and experimental study on micro-fracture behavior and restraining technology in micro-grinding of glass. Int. J. Mach. Tools Manuf. 2014, 85, 36–48. [Google Scholar] [CrossRef]
- Belkhir, N.; Aliouane, T.; Bouzid, D. Correlation between contact surface and friction during the optical glass polishing. Appl. Surf. Sci. 2014, 288, 208–214. [Google Scholar] [CrossRef]
- Shen, N.; Suratwala, T.; Steele, W.; Wong, L.; Feit, M.D.; Miller, P.E.; Dylla-Spears, R.; Desjardin, R. Nanoscratching of Optical Glass Surfaces Near the Elastic–Plastic Load Boundary to Mimic the Mechanics of Polishing Particles. J. Am. Ceram. Soc. 2016, 99, 1477–1484. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Q.; Li, P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int. J. Mach. Tools Manuf. 2015, 91, 12–23. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, H.; Chen, Z.; Fu, G.; Wang, J. Effect of brittle scratches on transmission of optical glass and its induced light intensification during the chemical etching. Opt. Eng. 2017, 56, 105101. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.P.; Rahman, M. Characteristics of ultrasonic vibration-assisted ductile mode cutting of tungsten carbide. Int. J. Adv. Manuf. Technol. 2008, 35, 833–841. [Google Scholar] [CrossRef]
- Fang, F.; Hao, N.; Hu, G. Rotary Ultrasonic Machining of Hard and Brittle Materials. Nanotechnol. Precis. Eng. 2014, 12, 227–234. [Google Scholar]
- Mahaddalkar, P.M.; Miller, M.H. Force and thermal effects in vibration-assisted grinding. Int. J. Adv. Manuf. Technol. 2014, 71, 1117–1122. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhao, Y.; Tian, F.Q.; Zhang, S.; Guo, L.S. Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int. J. Adv. Manuf. Technol. 2015, 78, 1893–1904. [Google Scholar] [CrossRef]
- Suárez, A.; Veiga, F.; De Lacalle, L.N.L.; Polvorosa, R.; Lutze, S.; Wretland, A. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718. J. Mater. Eng. Perform. 2016, 25, 5076–5086. [Google Scholar] [CrossRef]
- Celaya, A.; De Lacalle, L.N.L.; Campa, F.J.; Lamikiz, A. Ultrasonic Assisted Turning of mild steels. Int. J. Mater. Prod. Technol. 2010, 37, 60. [Google Scholar] [CrossRef]
- Feng, P.; Liang, G.; Zhang, J. Ultrasonic vibration-assisted scratch characteristics of silicon carbide-reinforced aluminum matrix composites. Ceram. Int. 2014, 40, 10817–10823. [Google Scholar] [CrossRef]
- Tesfay, H.D.; Xu, Z.; Li, Z.C. Ultrasonic vibration assisted grinding of bio-ceramic materials: An experimental study on edge chippings with Hertzian indentation tests. Int. J. Adv. Manuf. Technol. 2016, 86, 3483–3494. [Google Scholar] [CrossRef]
- Wang, J.; Guo, B.; Zhao, Q.; Zhang, C.Y.; Zhang, Q.L.; Zhai, W.J. Evolution of material removal modes of sapphire under varied scratching depths. Ceram. Int. 2017, 43, 10353–10360. [Google Scholar] [CrossRef]
- Cao, J.G.; Wu, Y.B.; Guo, H.R.; Fujimoto, M.; Mitsuyoshi, N. Experimental investigation of material removal mechanism in ultrasonic assisted grinding of SiC ceramics using a single diamond tool. Int. J. Mach. Tools Manuf. 2013, 7, 93–96. [Google Scholar] [CrossRef]
- Zhang, F.H.; Li, C.; Meng, B.B.; Zhao, H.; Liu, Z.D. Investigation of Surface Deformation Characteristic and Removal Mechanism for K9 Glass Based on Varied Cutting-depth Nano-scratch. J. Mech. Eng. 2016, 52, 65–71. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.H.; Meng, B.B.; Liu, L.F.; Rao, X.S. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram. Int. 2016, 43, 2981–2993. [Google Scholar] [CrossRef]
- Zhang, F.H.; Li, C.; Zhao, H.; Leng, B.; Ren, L.L. Simulation and experiment of double grits interacting scratch for optical glass BK7. J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 2018, 33, 15–22. [Google Scholar] [CrossRef]
- Li, Z.P.; Zhao, H.; Zhang, F.H. Study on the Ductile Removal Behavior of K9 Glass with Nano-Scratch. Adv. Mater. Res. 2016, 1136, 282–288. [Google Scholar] [CrossRef]
- Wang, W.; Yao, P.; Wang, J.; Huang, C.Z.; Zhu, H.T.; Liu, H.L.; Zou, B.; Liu, Y. Controlled material removal mode and depth of micro cracks in precision grinding of fused silica—A theoretical model and experimental verification. Ceram. Int. 2017, 43, 11596–11609. [Google Scholar] [CrossRef]
- Dai, J.B.; Su, H.H.; Yu, T.F.; Hu, H.; Zhou, W.B.; Ding, W.F. Experimental investigation on the material removal mechanism in during grinding silicon carbide ceramics with single diamond grain. Precis. Eng. 2017, 51, 217–279. [Google Scholar] [CrossRef]
- Gu, W.; Yao, Z.; Liang, X. Material removal of optical glass BK7 during single and double scratch tests. Wear 2011, 270, 241–246. [Google Scholar] [CrossRef]
- Xiao, H.P.; Chen, Z.; Wang, H.R.; Wang, J.H.; Zhu, N. Effect of grinding parameters on surface roughness and subsurface damage and their evaluation in fused silica. Opt. Express 2018, 26, 4638–4655. [Google Scholar] [CrossRef]
- Yu, T.; Li, H.; Wang, W. Experimental investigation on grinding characteristics of optical glass BK7: With special emphasis on the effects of machining parameters. Int. J. Adv. Manuf. Technol. 2016, 82, 1405–1419. [Google Scholar] [CrossRef]
- Lv, D.X.; Huang, Y.H.; Tang, Y.J.; Wang, H.X. Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes. Int. J. Adv. Manuf. Technol. 2013, 67, 613–622. [Google Scholar] [CrossRef]
- Pal, R.K.; Garg, H.; Sarepaka RG, V.; Karar, V. Experimental Investigation of Material Removal and Surface Roughness during Optical Glass Polishing. Adv. Manuf. Process. 2015, 31, 1613–1620. [Google Scholar] [CrossRef]
- Lin, X.H.; Zhang, J.B.; Tang, H.H.; Du, X.Y.; Guo, Y.B. Analysis of surface errors and subsurface damage in flexible grinding of optical fused silica. Int. J. Adv. Manuf. Technol. 2017, 88, 643–649. [Google Scholar] [CrossRef]
- Pereverzev, P.P.; Pimenov, D.Y.A. Grinding force model allowing for dulling of abrasive wheel cutting grains in plunge cylindrical grinding. J. Frict. Wear 2016, 37, 60–65. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, T.; Ye, H.; Cheng, J.; Hao, Y. Estimation of Energy and Time Savings in Optical Glass Manufacturing When Using Ultrasonic Vibration-Assisted Grinding. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Zhou, M.; Huang, S.N. Sub-surface crack formation in ultrasonic vibration-assisted grinding of BK7 optical glass. Int. J. Adv. Manuf. Technol. 2017, 93, 1685–1697. [Google Scholar] [CrossRef]
- Rinck, P.M.; Sitzberger, S.; Zaeh, M.F. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed. In Proceedings of the Fourth European Seminar on Precision Optics Manufacturing, International Society for Optics and Photonics, Teisnach, Germany, 4–5 April 2017; Volume 103260C. [Google Scholar] [CrossRef]
- Liu, L.P.; Zhao, W.; Ma, Y. Study on Imitating Grinding of Two-Dimensional Ultrasonic Vibration Turning System. In International Conference on Computer and Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 333–344. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, P.Y. Prediction of critical cutting depth for ductile-brittle transition in ultrasonic vibration assisted grinding of optical glasses. Int. J. Adv. Manuf. Technol. 2016, 86, 1775–1784. [Google Scholar] [CrossRef]
Serial No. | Spindle Rotation Speed n/(rpm) | Feed Rate Vf/(mm/min) | Grinding Depth ap/(μm) | Ultrasonic Amplitude A/(μm) |
---|---|---|---|---|
1 | 1000 | 110 | 60 | 7 |
2 | 3000 | 110 | 60 | 7 |
3 | 5000 | 110 | 60 | 7 |
4 | 7000 | 110 | 60 | 7 |
5 | 9000 | 110 | 60 | 7 |
6 | 11,000 | 110 | 60 | 7 |
7 | 13,000 | 110 | 60 | 7 |
8 | 15,000 | 110 | 60 | 7 |
9 | 11,000 | 10 | 60 | 7 |
10 | 11,000 | 30 | 60 | 7 |
11 | 11,000 | 50 | 60 | 7 |
12 | 11,000 | 70 | 60 | 7 |
13 | 11,000 | 90 | 60 | 7 |
14 | 11,000 | 110 | 60 | 7 |
15 | 11,000 | 130 | 60 | 7 |
16 | 11,000 | 150 | 60 | 7 |
17 | 11,000 | 110 | 10 | 7 |
18 | 11,000 | 110 | 20 | 7 |
19 | 11,000 | 110 | 30 | 7 |
20 | 11,000 | 110 | 40 | 7 |
21 | 11,000 | 110 | 50 | 7 |
22 | 11,000 | 110 | 60 | 7 |
23 | 11,000 | 110 | 70 | 7 |
24 | 11,000 | 110 | 80 | 7 |
25 | 11,000 | 110 | 60 | 0 |
26 | 11,000 | 110 | 60 | 1 |
27 | 11,000 | 110 | 60 | 2 |
28 | 11,000 | 110 | 60 | 3 |
29 | 11,000 | 110 | 60 | 4 |
30 | 11,000 | 110 | 60 | 5 |
31 | 11,000 | 110 | 60 | 6 |
32 | 11,000 | 110 | 60 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.Y.; Zhou, M.; Liu, X.L.; Jiang, B. Effect to the Surface Composition in Ultrasonic Vibration-Assisted Grinding of BK7 Optical Glass. Appl. Sci. 2020, 10, 516. https://doi.org/10.3390/app10020516
Zhao PY, Zhou M, Liu XL, Jiang B. Effect to the Surface Composition in Ultrasonic Vibration-Assisted Grinding of BK7 Optical Glass. Applied Sciences. 2020; 10(2):516. https://doi.org/10.3390/app10020516
Chicago/Turabian StyleZhao, Pei Yi, Ming Zhou, Xian Li Liu, and Bin Jiang. 2020. "Effect to the Surface Composition in Ultrasonic Vibration-Assisted Grinding of BK7 Optical Glass" Applied Sciences 10, no. 2: 516. https://doi.org/10.3390/app10020516
APA StyleZhao, P. Y., Zhou, M., Liu, X. L., & Jiang, B. (2020). Effect to the Surface Composition in Ultrasonic Vibration-Assisted Grinding of BK7 Optical Glass. Applied Sciences, 10(2), 516. https://doi.org/10.3390/app10020516