Use of Dynamic FEA for Design Modification and Energy Analysis of a Variable Stiffness Prosthetic Foot
Abstract
:Featured Application
Abstract
1. Introduction
2. Model Development
2.1. Preparation of FEA
2.2. Model Validation
2.3. Strain Energy
3. Simulating Design Modification
Active Functional Joint
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, A.; Starker, F. Prosthetic Foot Principles and Their Influence on Gait. In Handbook of Human Motion, 1st ed.; Müller, B., Wolf, S.I., Eds.; Springer International Publishing AG: Stuttgart, Germany, 2016. [Google Scholar]
- Grimmer, M. Powered Lower Limb Prostheses; Technical University of Darmstadt: Darmstadt, Germany, 2015. [Google Scholar]
- Childers, W.L.; Takahashi, K.Z. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, P.G.; Roland, M.; Hahn, M.E. Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot stiffness in foot prostheses. Hum. Mov. Sci. 2017, 54, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Versluys, R.; Beyl, P.; Damme, M.V.; Desomer, A.; Ham, R.V.; Lefeber, D. Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle–foot biomechanics. Disabil. Rehabil. Assist. Technol. 2009, 4, 65–75. [Google Scholar] [CrossRef]
- Dziaduszewska, M.; Wekwejt, M. Composites in energy storing prosthetic feet. Eur. J. Med. Technol. 2018, 3, 16–22. [Google Scholar]
- Beck, O.N.; Taboga, P.; Grabowski, A.M. Characterizing the Mechanical Properties of Running-Specific Prostheses. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Pro-Flex Catalog. Available online: https://res.cloudinary.com/ossur/image/upload/v1573570065/product-documents/en-us/PN20158/catalogs/PN20158_Pro-Flex_Pivot.pdf (accessed on 2 December 2019).
- Hansen, A.H.; Childress, D.S.; Miff, S.C.; Gard, S.A.; Mesplay, K.P. The human ankle during walking: Implications for design of biomimetic ankle prostheses. J. Biomech. 2004, 37, 1467–1474. [Google Scholar] [CrossRef]
- Shell, C.E.; Segal, A.D.; Klute, G.K.; Neptune, R.R. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning. Clin. Biomech. 2017, 49, 56–63. [Google Scholar] [CrossRef]
- Shepherd, M.K.; Rouse, E.J. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis with Continuously Variable Stiffness. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2375–2386. [Google Scholar] [CrossRef]
- Glanzer, E.M.; Adamczyk, P.G. Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2351–2359. [Google Scholar] [CrossRef]
- Shepherd, M.K.; Azocar, A.F.; Major, M.J.; Rouse, E.J. Amputee perception of prosthetic ankle stiffness during locomotion. J. Neuroeng. Rehabil. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- De Asha, A.R.; Munjal, R.; Kulkarni, J.; Buckley, J.G. Impact on the biomechanics of overground gait of using an ‘Echelon’ hydraulic ankle–foot device in unilateral trans-tibial and trans-femoral amputees. Clin. Biomech. 2014, 29, 728–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safaeepour, Z.; Eshraghi, A.; Geil, M. The effect of damping in prosthetic ankle and knee joints on the biomechanical outcomes: A literature review. Prosthet. Orthot. Int. 2017, 41, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Adamczyk, P.G.; Roland, M.; Hahn, M.E. The Effect of High- and Low-Damping Prosthetic Foot Structures on Knee Loading in the Uninvolved Limb Across Different Walking Speeds. J. Appl. Biomech. 2016, 32, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Omasta, M.; Paloušek, D.; Návrat, T.; Rosický, J. Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees. Med. Eng. Phys. 2012, 34, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, X.; Pillet, H.; Fode, P.; Lavaste, F.; Skalli, W. Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2012, 226, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, P.; Aristodemou, S.; Ransing, R.S. Prosthetic foot design optimisation based on roll-over shape and ground reaction force characteristics. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 2016, 231, 3093–3103. [Google Scholar] [CrossRef]
- Saunders, M.M.; Schwentker, E.P.; Kay, D.B.; Bennett, G.; Jacobs, C.R.; Verstraete, M.C.; Njus, G.O. Finite Element Analysis as a Tool for Parametric Prosthetic Foot Design and Evaluation. Technique Development in the Solid Ankle Cushioned Heel (SACH) Foot. Comput. Methods Biomech. Biomed. Eng. 2003, 6, 75–87. [Google Scholar] [CrossRef]
- Ke, M.-J.; Huang, K.-C.; Lee, C.-H.; Chu, H.-Y.; Wu, Y.-T.; Chang, S.-T.; Chiang, S.-L.; Su, K.-C. Influence of Three Different Curvatures Flex-Foot Prosthesis While Single-leg Standing or Running: A Finite Element Analysis Study. J. Mech. Med. Biol. 2017, 17, 1750055. [Google Scholar] [CrossRef]
- Kandil, A.H. Finite Element based Model of Modified Niagara Foot and its Effect on Stiffness. Int. J. Comput. Appl. 2016, 134. [Google Scholar] [CrossRef]
- Quesada, P.; Skinner, H.B. Analysis of a below-knee patellar tendon-bearing prosthesis: A finite element study. J. Rehabil. Res. Dev. 1991, 28, 1–12. [Google Scholar] [CrossRef]
- Cagle, J.C.; Reinhall, P.G.; Allyn, K.J.; Mclean, J.; Hinrichs, P.; Hafner, B.J.; Sanders, J.E. A finite element model to assess transtibial prosthetic sockets with elastomeric liners. Med. Biol. Eng. Comput. 2018, 56, 1227–1240. [Google Scholar] [CrossRef] [PubMed]
- Vinney, J.; Noroozi, S.; Rahman, A.G.A.; Sewell, P.; Chao, O.Z.; Kuan, K.K.; Dupac, M. Analysis of Composite Prosthetic Energy-Storing-and-Returning (ESR) feet: A comparison between FEA and the experimental analysis. Int. J. COMADEM 2012, 15, 19–28. [Google Scholar]
- Noroozi, S.; Rahman, A.G.A.; Khoo, S.Y.; Zahedi, S.; Sewell, P.; Dyer, B.; Ong, Z.C. The dynamic elastic response to impulse synchronisation of composite prosthetic energy storing and returning feet. Proc. Inst. Mech. Eng. Part. P J. Sports Eng. Technol. 2014, 228, 24–32. [Google Scholar] [CrossRef]
- Rigney, S.M.; Simmons, A.; Kark, L. Mechanical characterization and comparison of energy storage and return prostheses. Med. Eng. Phys. 2017, 41, 90–96. [Google Scholar] [CrossRef]
- ISO/TS 16955:2016. Prosthetics-Quantification of Physical Parameters of Ankle Foot Devices and Foot Units; International Organization for Standardization: Geneva, Switzerland, 2016; p. 17. [Google Scholar]
- Tryggvason, H.; Starker, F.; Lecomte, C.; Jonsdottir, F. Modeling of stiffness characteristics in a prosthetic foot. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Holladay, UT, USA, 18–20 September 2017. [Google Scholar]
- Heitzmann, D.W.W.; Salami, F.; De Asha, A.R.; Block, J.; Putz, C.; Wolf, S.I.; Alimusaj, M. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Gait Posture 2018, 64, 174–180. [Google Scholar] [CrossRef]
- Francis, S. ANSYS Mechanical APDL Element Reference; ANSYS Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Mujika, F. On the effect of shear and local deformation in three-point bending tests. Polym. Test. 2007, 26, 869–877. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tryggvason, H.; Starker, F.; Lecomte, C.; Jonsdottir, F. Use of Dynamic FEA for Design Modification and Energy Analysis of a Variable Stiffness Prosthetic Foot. Appl. Sci. 2020, 10, 650. https://doi.org/10.3390/app10020650
Tryggvason H, Starker F, Lecomte C, Jonsdottir F. Use of Dynamic FEA for Design Modification and Energy Analysis of a Variable Stiffness Prosthetic Foot. Applied Sciences. 2020; 10(2):650. https://doi.org/10.3390/app10020650
Chicago/Turabian StyleTryggvason, Heimir, Felix Starker, Christophe Lecomte, and Fjola Jonsdottir. 2020. "Use of Dynamic FEA for Design Modification and Energy Analysis of a Variable Stiffness Prosthetic Foot" Applied Sciences 10, no. 2: 650. https://doi.org/10.3390/app10020650
APA StyleTryggvason, H., Starker, F., Lecomte, C., & Jonsdottir, F. (2020). Use of Dynamic FEA for Design Modification and Energy Analysis of a Variable Stiffness Prosthetic Foot. Applied Sciences, 10(2), 650. https://doi.org/10.3390/app10020650