In-Line Target Production for Laser IFE
Abstract
:Featured Application
Abstract
1. Introduction
- Firstly, the target rotation when it rolls down along the layering channel (LC) (n-fold-spirals at n = 1, 2, 3) results in a liquid layer symmetrization;
- Secondly, the heat-transport outside the target via the conduction through a small contact area between the shell wall and the LC wall. The spiral LC is a special insert into the cryostat, and it is cooled outside by helium. A contact spot moving along the outer surface of the rotating target results in a liquid layer freezing.
2. Modeling Results
2.1. FST-Layering Method for Classical High Gain Targets
- Target slides on the LC surface (no rotation: sliding and only sliding or pure S&S-mode);
- Target combines rolling with sliding (rolling with sliding or mixed R&S-mode);
- Target rolls on the LC surface without sliding (rolling and only rolling or pure R&R-mode).
- —
- Tin = Ts ~ 35 K: τform = 22.45 s for D2 fuel and τform = 28.52 s for D−T fuel,
- —
- Tin = Td ~ 28 K: τform = 12.05 s for D2 fuel and τform = 14.25 s for D−T fuel,
- Specifications (baseline design: Spiral 1 + Spiral 2): angle of each spiral − α = 11.50, radius of each spiral − 21 mm, height of each spiral − 450 mm, length of each spiral − 2.261 m, total spiral length − 4.52 m, total time of target rolling − 23.49 s;
- Tin ~ Td → the double-spiral LC specifications are those at which the TIP criterion (2) is valid for both D2 and D−T fuel;
- Tin ~ Ts → the TIP criterion is valid for D2 fuel;
- Tin ~ Ts → the TIP criterion is not valid for D−T fuel.
- Specifications #1 (baseline design: Spiral 1 + Spiral 2 + Spiral 3): angle of each spiral − α = 16.70, radius of each spiral − 21 mm, height of each spiral − 88 cm, length of each spiral − 3.066 m, total spiral length − 9.187 m, total time of target rolling − 33.29 s;
- Specifications #2 (Specifications #1 + Spiral 4). Spiral 4: angle − α = 30, radius − 21 mm, height − 10.8 cm, length − 2.070 m, total length of Spiral 3 and Spiral 4 − 5.136 m. Other words, this 3-fold LC is designed in a special configuration with an extra short Spiral 4 (combined LC).
2.2. Noncontact Accelerating of a Target
3. FST-TL Key Elements and Their Functional Description
3.1. FST Layering Module
3.2. FST-Projectile Assembly Module
3.3. Noncontact Delivery System
3.4. Physical Layout of the FST-TL
- There are considered various target designs for direct drive IFE (e.g., compare CHGT-1 and CHGT-2);
- For each target design, low cost methods of high rate target fabrication are needed;
- Targets must survive mechanical and thermal loads during injection;
- Noncontact options for target acceleration and repeatable injection are also needed.
- Fuel filling of a batch of 5-to-25 free-standing targets at one time (Pmax = 1000 atm at 300 K) (Figure 1c);
- Target tracking and characterization using the Fourier holography methods.
4. FST-TL in the Single-Shot Laser Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pathways to Energy from Inertial Fusion: Materials beyond Ignition. In Proceedings of the 3rd IAEA Research Coordination Meeting of the Coordinated Research Project (F13016), Vienna, Austria, 21−23 January 2019; Available online: https://www.iaea.org/events/evt1805417 (accessed on 23 January 2019).
- Aleksandrova, I.; Koresheva, E. Review on high repetition rate and mass production of the cryogenic targets for laser IFE. High Power Laser Sci. Eng. 2017, 5, e11. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrova, I.; Koresheva, E.; Koshelev, E.; Krokhin, O.; Nikitenko, A.; Osipov, I. Cryogenic hydrogen fuel for controlled inertial confinement fusion (concept of cryogenic target factory based on FST-layering method). Phys. At. Nucl. 2017, 80, 1227–1248. [Google Scholar] [CrossRef]
- Aleksandrova, I.; Koresheva, E.; Koshelev, E. Multiple target protection methods for target delivery at the focus of high repetition rate laser facilities. Probl. At. Sci. Technol. Ser. Thermonucl. Fusion 2018, 41, 73–85. [Google Scholar]
- Aleksandrova, I.; Akunets, A.; Koresheva, E.; Koshelev, E. Contactless HTSC sabot acceleration by mutually normal magnetic fields generated in a PMG system with magnetic travelling wave. In Proceedings of the XLV International Conference on Plasma Physics and Controlled Thermonuclear Fusion, Moscow, Russia, 2–5 April 2018. [Google Scholar]
- Aleksandrova, I.; Koresheva, E.; Osipov, I.; Timasheva, T.; Tolokonnikov, S.; Panina, L.; Belolipetskiy, A.; Yaguzinskiy, L. Ultrafine fuel layers for application to ICF/IFE targets. Fusion Sci. Technol. 2013, 63, 106–119. [Google Scholar] [CrossRef]
- Aleksandrova, I.; Bazdenkov, S.; Chtcherbakov, V. Rapid fuel layering inside moving free-standing ICF targets: Physical model and simulation code development. Laser Part. Beams 2002, 20, 13–21. [Google Scholar] [CrossRef]
- Aleksandrova, I.; Bazdenkov, S.; Chtcherbakov, V.; Gromov, A.; Koresheva, E.; Koshelev, E.; Osipov, I.; Yaguzinskiy, L. An efficient method of fuel ice formation in moving free standing ICF/IFE targets. J. Phys. D Appl. Phys. 2004, 37, 1163–1179. [Google Scholar] [CrossRef]
- Goodin, D.; Aleksander, N.B.; Brown, L.C.; Frey, D.; Gallix, R.; Gibson, C.R.; Maxwell, J.L.; Nobile, A.J.; Olson, C.L.; Petzoldt, R.W.; et al. A cost-effective target supply for inertial fusion energy. Nucl. Fusion 2004, 44, S254–S265. [Google Scholar] [CrossRef]
- Canaud, B.; Fortin, X.; Garaude, F.; Meyer, C.; Philippe, F. Progress in direct-drive fusion studies for the Laser Mégajoule. Laser Part. Beams 2004, 22, 109–114. [Google Scholar] [CrossRef]
- Frey, D.; Alexander, N.; Bozek, A.; Goodin, D.; Stemke, R.; Drake, T.; Bitner, D. Mass production methods for fabrication of inertial fusion targets. Fusion Sci. Technol. 2007, 51, 786–790. [Google Scholar] [CrossRef]
- Bousquet, J.; Hung, J.; Goodin, D.; Alexander, N. Advancement in glow discharge polymer coatings for mass production. Fusion Sci. Technol. 2009, 55, 446–449. [Google Scholar] [CrossRef]
- National Research Council of the National Academies. Inertial Fusion Energy Technologies. In An Assessment of the Prospects for Inertial Fusion Energy; The National Academies Press: Washington, DC, USA, 2013; Chapter 3; pp. 89–105. ISBN 978-0-309-27081-6. [Google Scholar]
- Mori, Y.; Nishimura, Y.; Ishii, K.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Satoh, N.; Kurita, T.; Kato, Y.; et al. 1-Hz Bead-Pellet Injection System for Fusion Reaction Engaged by a Laser HAMA Using Ultra-Intense Counter Beams. Fusion Sci. Technol. 2019, 75, 36–48. [Google Scholar] [CrossRef]
- Mori, Y.; Iwamoto, A.; Ishii, K.; Hanayama, R.; Okihara, S.; Kitagawa, Y.; Nishimura, Y.; Komeda, O.; Hioki, T.; Motohiro, T.; et al. Spherical shell pellet injection system for repetitive laser engagement. Nucl. Fusion 2019, 59, 096022. [Google Scholar] [CrossRef]
- Ren, L.; Shao, P.; Zhao, D.; Zhou, Y.; Cai, Z.; Hua, N.; Jiao, Z.; Xia, L.; Qiao, Z.; Wu, R.; et al. Target Alignment in the Shen-Guang II Upgrade Laser Facility. High Power Laser Sci. Eng. 2018, 6, e10. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, R. Trajectory adjusting system using a magnetic lens for a Pb-coated superconducting IFE target. Fusion Eng. Des. 2006, 81, 2877–2885. [Google Scholar] [CrossRef]
- Kubo, T.; Karino, T.; Kato, H.; Kawata, S. Fuel Pellet Alignment in Heavy-Ion Inertial Fusion Reactor. IEEE Trans. Plasma Sci. 2019, 47, 2–8. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Hamza, A.V. Condensed hydrogen for thermonuclear fusion. J. Appl. Phys. 2010, 108, 091101. [Google Scholar] [CrossRef]
- Koziozemski, B.J.; Mapoles, E.R.; Sater, J.D.; Chernov, A.A.; Moody, J.D.; Lugten, J.B.; Johnson, M.A. Deuterium-Tritium Fuel Layer Formation for the National Ignition Facility. Fusion Sci. Technol. 2011, 59, 14–25. [Google Scholar] [CrossRef]
- Mapoles, E. Production of hydrogen ice layers for NIF targets. In Proceedings of the 7th International Conference on Inertial Fusion Science and Applications, Bordeaux, France, 12–16 September 2011. [Google Scholar]
- Bringa, E.M.; Caro, A.; Victoria, M.; Park, N. Atomistic modeling of wave propagation in nanocristals. J. Miner. Met. Mater. Soc. 2005, 57, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Nakai, S.; Miley, G. Physics of High Power Laser and Matter Interactions; Word Scientific Publishing: Singapore, 1992; Volume 1, pp. 87–90. [Google Scholar]
- Bodner, S.; Colombant, D.; Schmitt, A.; Gardner, J.; Lehmberg, R.; Obenschain, S. High Gain Target Design for Laser Fusion. Phys. Plasmas 2000, 7, 2298–2301. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Samarsky, A.A. Equations of Mathematical Physics; Nauka: Moscow, Russia, 1977. [Google Scholar]
- Samarsky, A.A.; Mikhailov, A.P. Mathematical Modeling: Ideas, Methods, Examples; Nauka: Moscow, Russia, 2002. [Google Scholar]
- Koresheva, E. FST transmission line for mass manufacturing of IFE targets. In Proceedings of the 1st IAEA RCM of the CRP Pathways to Energy from Inertial Fusion: Materials beyond Ignition, Vienna, Austria, 16−19 February 2011; IAEA: Vienna, Austria, 2016. [Google Scholar]
- Golovashkin, A.I.; Ivanenko, O.M.; Leitus, G.I.; Mitsen, K.V.; Karpinskii, O.G.; Shamrai, V.F. Anomalous behavior of the structural parameters of the ceramic YBa2Cu3O7 near the superconducting transition. J. Exp. Theor. Phys. (JETP) Lett. 1987, 46, 410–412. [Google Scholar]
- Lee, S.; Petrykin, V.; Molodyk, A.; Samoilenkov, S.; Kaul, A.; Vavilov, A.; Vysotsky, V.; Fetisov, S. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. Supercond. Sci. Technol. 2014, 27, 044022. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.; Lifshitz, E. Theoretical Physics. Electrodynamics of Continuous Media, 2nd ed.; Nauka: Moscow, Russia, 1982. [Google Scholar]
- Goldacker, W.; Schlachter, S.; Zimmer, S.; Reineret, H. High transport currents in mechanically reinforced MgB2 wires. Supercond. Sci. Technol. 2001, 14, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Dolya, S. Acceleration of magnetic dipoles by a sequence of current-carrying turns. Tech. Phys. 2014, 59, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Settles, G.; Hargather, M. A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol. 2017, 28, 042001. [Google Scholar] [CrossRef]
CHGT-1 Design | τform | ||
---|---|---|---|
Tin = 37 K | Tin = 27 K | ||
1 | CH shell without overcoat | 227.5 c | 149.0 c |
2 | Gold-coated CH shell | 13.65 c | 8.94 c |
Material | Di (μm) | Δl (μm) | D0 (μm) | ρl (g/cm3) |
---|---|---|---|---|
D−T (vapor) | 0 | 3000 | 3000 | 0.3∙10−3 |
D−T (solid) | 3000 | 190 | 3380 | 0.25 |
CH (DT)64 | 3380 | 261 | 3902 | 0.25775 |
CH layer | 3902 | 1 | 3904 | 1.07 |
D2 Fuel | |||
Calculation | Experiment | ||
Tin | τform | τ2rol | τ2rol |
35.0 K | 22.45 s | 23.49 s | 23.5 s (min) |
27.5 K | 12.05 s | ||
D−T Fuel | |||
Calculation | Experiment | ||
Tin | τform | τ3rol | τ3rol |
37.5 K | 28.52 s | 33.29 s | 35 s (min) |
28.0 K | 14.25 s | 34.79 s |
HTSC Type | Density (g/cm3) | Bc at 0 K (T) | Tc (K) |
---|---|---|---|
Y123 | ρ = 4.33 | >45 T | 91 |
Gd123 | ρ = 3.25 | >45 T | 92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrova, I.; Koshelev, E.; Koresheva, E. In-Line Target Production for Laser IFE. Appl. Sci. 2020, 10, 686. https://doi.org/10.3390/app10020686
Aleksandrova I, Koshelev E, Koresheva E. In-Line Target Production for Laser IFE. Applied Sciences. 2020; 10(2):686. https://doi.org/10.3390/app10020686
Chicago/Turabian StyleAleksandrova, Irina, Eugeniy Koshelev, and Elena Koresheva. 2020. "In-Line Target Production for Laser IFE" Applied Sciences 10, no. 2: 686. https://doi.org/10.3390/app10020686
APA StyleAleksandrova, I., Koshelev, E., & Koresheva, E. (2020). In-Line Target Production for Laser IFE. Applied Sciences, 10(2), 686. https://doi.org/10.3390/app10020686