Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MgO/EP Composites
2.3. Characterization and Testing
2.3.1. Characterization by Scanning Electron Microscopy
2.3.2. Thermal Conductivity
2.3.3. Volume Resistivity
2.3.4. Dielectric Performance
2.3.5. Breakdown Strength
3. Results and Discussion
3.1. SEM Imaging
3.2. Thermal Properties
3.3. Volume Resistivity
3.4. Dielectric Performance
3.5. Breakdown Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.L.; Qian, X.; Yang, R.G. Thermal conductivity of polymers and polymer nanocomposite. Mater. Sci. Eng. 2018, 132, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Mcnamara, A.J.; Joshi, Y.; Zhang, Z.M. Characterization of nanostructured thermal interface materials—A review. Int. J. Therm. Sci. 2012, 62, 2–11. [Google Scholar] [CrossRef]
- Huang, X.Y.; Jiang, P.K.; Tanaka, T.A. Review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 2011, 27, 8–16. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Stancu, C.; Wiesbrock, F.; Schlögl, S. Polyethylene Nanocomposites for Power Cable Insulations. Polymers 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.A.; Azis, N.; Jasni, J.; Ab Kadir, M.Z.A.; Yunus, R.; Yaakub, Z. Ageing Study of Palm Oil and Coconut Oil in the Presence of Insulation Paper for Transformers Application. Materials 2018, 11, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortazavi, B.; Benzerara, O.; Meyer, H.; Bardon, j.; Ahzi, S. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 2013, 60, 356–365. [Google Scholar] [CrossRef]
- Rubrice, K.; Castel, X.; Himdi, M.; Parneix, P. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials. Materials 2016, 9, 825. [Google Scholar] [CrossRef]
- Lewis, T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 739–753. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 12–33. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Imai, T.; Sawa, F.; Ozaki, T.; Inoue, Y.; Tanaka, T. Comparison of insulation breakdown properties of epoxy nanocomposites under homogeneous and divergent electric fields. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 15–18 October 2006; IEEE: Piscataway, NJ, USA, 2006; Volume17, pp. 306–309. [Google Scholar]
- Hu, Y.G.; Robert, C.S.; Nelson, J.K. Some mechanistic understanding of the impulse strength of nanocomposites. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2006, 28, 31–34. [Google Scholar]
- Imai, T.; Sawa, F.; Nakano, T.; Ozaki, T.; Shimizu, T.; Kozako, M. Effects of nano-andmicro-fillermixture on electrical insulation properties of epoxy based composites. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 319–326. [Google Scholar] [CrossRef]
- Poh, C.L.; Mariatti, M.; Noor, A.F.M.; Sidek, O.; Chuah, T.P.; Chow, S.C. Dielectric properties of surface treated multi-walled carbon nanotube/epoxy thin film composites. Compos. Part B 2015, 85, 50–58. [Google Scholar] [CrossRef]
- Imai, T. Preparation and Properties of Epoxy-organically Modified Layered Silicate Nanocomposites. In Proceedings of the Conference Record of the IEEE International Symposium on Electrical Insulation, Boston, MA, USA, USA, 7–10 April 2020; IEEE: Piscataway, NJ, USA, 2002; Volume 18, pp. 379–383. [Google Scholar]
- Li, S.Y.; Yin, G.L.; Bai, S.N.; Li, J. A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1535–1543. [Google Scholar] [CrossRef]
- Nelson, J.K.; Fothergill, J.C.; Dissado, L.A. Towards an understanding of nanometric dielectrics. IEEE Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2002, 35, 295–298. [Google Scholar]
- Imai, T.; Sawa, F.; Ozaki, T. Approach by nano-andmicro-fillermixture toward epoxy-based nanocomposites as industrial insulating materials. IEEJ Trans. Fundam. Mater. 2006, 126, 1136–1143. [Google Scholar] [CrossRef] [Green Version]
- Majeed, K.J. Improvement of Thermal Conductivity of Nano MgO/Epoxy Composites for Electrical Insulation Materials. Int. Congress Adv. Appl. Phys. Mater. 2013, 24, 304–308. [Google Scholar]
- Agari, Y.; Tanaka, M.; Nagai, S.; Uno, T. Thermal conductivity of apolymer composite filled with mixtures of particles. J. Appl. Polym. Sci. 1987, 34, 1429–1433. [Google Scholar] [CrossRef]
- Thomas, A.; Roman, K.; Morshuis, P.H.F.; Smit, J.J. Dielectric Properties and Space Charge Behavior of MgO-epoxy Nanocomposites. In Proceedings of the International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 1–4. [Google Scholar]
- Du, B.X.; Guo, Y.G.; Liu, Y. Effects of Adding Nanofiller on DC Tracking Failure of Epoxy/MgO Nano-composites under Contaminated Conditions. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2146–2155. [Google Scholar] [CrossRef]
- Guo, Y.G.; Du, B.X.; Xiao, M.; Liu, Y. Effects of Adding Rate on DC Tracking Failure of Epoxy/MgO Nano-composites Under Contaminated Conditions. In Proceedings of the International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; IEEE: Piscataway, NJ, USA, 2014; Volume 37, pp. 473–476. [Google Scholar]
- Andritsch, T.; Kochetov, R.; Morshuis, P.H.F.; Smit, J.J. Short-term DC Breakdown and Complex Permittivity of Al2O3-and MgO-Epoxy Nanocomposites. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2010, 1, 1–4. [Google Scholar]
- Kochetov, R.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. Impact of Postcuring and Water Absorption on the Dielectric Response of Epoxy-based Composites Filled with MgO Nanoparticles. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2011, 26, 342–345. [Google Scholar]
- Hinata, K.; Fujita, A.; Tohyama, K.; Murata, Y. Dielectric Properties of LDPE/MgO Nanocomposite Material under AC High Field. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2006, 313–316. [Google Scholar]
- Maezawa, T.; Kishi, Y.; Tanaka, Y.; Takada, T.; Goshowaki, M. Dependence of filler size on space charge formation in LDPE/MgO under high electric field at high temperature. In Proceedings of the International Symposium on Electrical Insulating Materials, Mie, Japan, 7–11 September 2008; IEEE: Piscataway, NJ, USA, 2008; Volume 19, pp. 139–142. [Google Scholar]
- Murakami, Y.; Nemoto, M.; Okuzumi, S.; Masuda, S.; Nagao, M.; Hozumi, N. DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 33–39. [Google Scholar] [CrossRef]
- Murata, Y.; Murakami, Y.; Nemoto, M. Effects of nano-sized MgO-filler on electrical phenomena under DC voltage application in LDPE. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena 2005, 18, 175–179. [Google Scholar]
- Sima, L.C.; Ramanana, S.R.; Ismaila, H.; Seetharamub, K.N.; Gohc, T.J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 2005, 430, 155–165. [Google Scholar] [CrossRef]
- Kochetov, R.; Tsekmes, I.A.; Morshuis, P.H.F. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement. Smart Mater. Struct. 2015, 24, 7. [Google Scholar] [CrossRef]
- Chauvet, C.; Laurent, C. Weibull statistics in short-term dielectric breakdown of thin polyethylene films. IEEE Trans. Dielectr. Electr. Insul. 1993, 28, 18–29. [Google Scholar] [CrossRef]
- Preetha, P.; Thomas, M.J. AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1526–1534. [Google Scholar] [CrossRef]
Percentage | E0 (20/150 ℃) | β (20/150 ℃) | ||
---|---|---|---|---|
EP | 32.426 | 16.324 | 16.523 | 12.482 |
0.5 wt% | 34.994 | 16.884 | 19.799 | 13.576 |
1 wt% | 35.534 | 17.456 | 26.049 | 16.137 |
3 wt% | 33.814 | 15.762 | 22.573 | 13.426 |
5 wt% | 33.226 | 13.324 | 17.822 | 12.213 |
7 wt% | 31.579 | 11.498 | 20.135 | 13.902 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, G.; Tang, Y.; Li, Y.; Huang, L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Appl. Sci. 2020, 10, 7018. https://doi.org/10.3390/app10207018
Ge G, Tang Y, Li Y, Huang L. Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Applied Sciences. 2020; 10(20):7018. https://doi.org/10.3390/app10207018
Chicago/Turabian StyleGe, Guanghui, Yongzhe Tang, Yuxia Li, and Liangsong Huang. 2020. "Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites" Applied Sciences 10, no. 20: 7018. https://doi.org/10.3390/app10207018
APA StyleGe, G., Tang, Y., Li, Y., & Huang, L. (2020). Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites. Applied Sciences, 10(20), 7018. https://doi.org/10.3390/app10207018