Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Conditions, and Preparation of Inoculums
2.2. Texture Profile Analysis of Fermented Milk Beverages
2.3. Determination of the Protein and Nitrogen Content and the Proteolysis Index of Fermented Milk Beverages
2.4. Hydrolysis of the Whey Protein Preparation
2.5. Detection of Sequences of Biopeptides in the Hydrolysates
2.6. Statistical Analysis
3. Results
3.1. Analysis of Fermented Milk Beverages
3.1.1. Texture Profile Analysis
3.1.2. Determination of the Protein and Nitrogen Content and Calculation of the Proteolysis Index
3.2. Analysis of the Sequences of Biopeptides Detected in the Hydrolysates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Królczyk, J.B.; Dawidziuk, T.; Janiszewska-Turak, E.; Sołowiej, B. Use of Whey and Whey Preparations in the Food Industry—A Review. Pol. J. Food Nutr. Sci. 2016, 66, 157–165. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, K. Utilization of whey for the production of instant energy beverage by using response surface methodology. Adv. J. Food Sci. Technol. 2012, 4, 103–111. [Google Scholar]
- Božanić, R.; Barukčić, I.; Jakopović, K.L.; Tratnik, L. Possibilities of whey utilisation. Austin J. Nutri. Food Sci. 2014, 2, 1036. [Google Scholar]
- Isleten, M.; Karagul-Yuceer, Y. Effects of functional dairy based proteins on nonfat yogurt quality. J. Food Qual. 2008, 31, 265–280. [Google Scholar] [CrossRef]
- Nastaj, M.; Terpiłowski, K.; Sołowiej, B.G. The effect of native and polymerised whey protein isolate addition on surface and microstructural properties of processed cheeses and their meltability determined by Turbiscan. Int. J. Food Sci. Technol. 2020, 55, 2179–2187. [Google Scholar] [CrossRef]
- Garcia–Serna, E.; Martinez–Saez, N.; Mesias, M.; Morales, F.J.; del Castillo, M.D. Use of coffee Silverskin and Stevia to improve the formulation of biscuits. Pol. J. Food Nutr. Sci. 2014, 64, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Bolumar, T.; Toepfl, S.; Heinz, V. Fat reduction and replacement in dry-cured fermented sausage by using high pressure processing meat as fat replacer and olive oil. Pol. J. Food Nutr. Sci. 2015, 65, 175–182. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, C.; Becerra, M.; Chafer, M.; Albors, A.; Carot, J.M.; Chiralt, A. Influence of substituting milk powder for whey powder on yogurt quality. Trends Food Sci. Technol. 2002, 13, 334–340. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Michaelidou, A.M. Factors influencing nutritional and health profile of milk and milk products. Small Rumin. Res. 2008, 79, 42–50. [Google Scholar] [CrossRef]
- Skrzypczak, K.; Gustaw, W.; Waśko, A. Selected technological and probiotic characteristics of strains of Lactobacillus helveticus species. Żywność. Nauka. Technol. Jakość 2015, 102, 61–72. [Google Scholar]
- Skrzypczak, K.; Gustaw, W.; Jabłońska-Ryś, E.; Michalak-Majewska, M. Antioxidative properties of milk protein preparations fermented by Polish strains of Lactobacillus helveticus. Acta Sci. Pol. Technol. Aliment. 2017, 16, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypczak, K.; Gustaw, W.; Szwajgier, D.; Fornal, E.; Waśko, A. κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Int. J. Food Sci. Technol. 2017, 54, 3679–3688. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, K.W.; Gustaw, W.Z.; Waśko, A.D. Distribution of Cell Envelope Proteinases Genes among Polish Strains of Lactobacillus helveticus. Pol. J. Microbiol. 2018, 67, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Skrzypczak, K.; Fornal, E.; Waśko, A.; Gustaw, W. Effects of probiotic fermentation of selected milk and whey protein preparations on bioactive and technological properties. Ital. J. Food Sci. 2019, 31, 437–450. [Google Scholar]
- Skrzypczak, K.; Gustaw, W.; Kononiuk, A.; Sołowiej, B.; Waśko, A. Estimation of the antioxidant properties of milk protein preparations hydrolyzed by Lactobacillus helveticus T80, T105 and B734. Czech J. Food Sci. 2019, 37, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Waśko, A.; Szwajgier, D.; Polak-Berecka, M. The role of ferulic acid esterase in the growth of Lactobacillus helveticus in the presence of phenolic acids and their derivatives. Eur. Food Res. Technol. 2014, 238, 236–299. [Google Scholar] [CrossRef] [Green Version]
- Carminati, D.; Mazzucotelli, L.; Giraffa, G.; Neviani, E. Incidence of Inducible Bacteriophage in Lactobacillus helveticus Strains Isolated from Natural Whey Starter Cultures. J. Dairy Sci. 1997, 80, 1505–1511. [Google Scholar] [CrossRef]
- Beganović, J.; Kos, B.; Leboš Pavunc, A.; Uroić, K.; Džidara, P.; Šušković, J. Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 2013, 20, 58–64. [Google Scholar] [CrossRef]
- Gustaw, W.; Kozioł, J.; Radzki, W.; Skrzypczak, K.; Michalak-Majewska, M.; Sołowiej, B.; Sławińska, A.; Jabłońska-Ryś, E. The effect of addition of selected milk protein preparations on the growth of Lactobacillus acidophilus and physicochemical properties of fermented milk. Acta Sci. Pol. Technol. Aliment. 2016, 15, 29–36. [Google Scholar] [CrossRef] [Green Version]
- EN ISO. Milk and Milk Products—Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation; 8968-1:2014; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- ISO. Milk—Determination of Nitrogen Content—Part 4: Determination of Non-Protein-Nitrogen Content; 8968-4:2001 [IDF 20-4:2001]; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH(24), NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006, 72, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://mbpdb.nws.oregonstate.edu (accessed on 29 July 2020).
- Available online: www.uwm.edu.pl/biochemia/index.php/pl/biopep (accessed on 27 May 2020).
- Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int. 2008, 91, 965–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziuba, M.; Dziuba, B.; Iwaniak, A. Milk proteins as precursors of bioactive peptides. Acta Sci. Pol. Technol. Aliment. 2009, 8, 71–90. [Google Scholar]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Sieniawski, K.; Starowicz, P. BIOPEP database of sensory peptides and amino acids. Food Res. Int. 2016, 85, 155–161. [Google Scholar] [CrossRef]
- Available online: http://bis.zju.edu.cn/biopepdbr/ (accessed on 8 April 2020).
- Zhang, L.; Falla, T.J. Antimicrobial peptides—Therapeutic potential. Expert Opin. Pharmacother. 2006, 7, 653–663. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Chen, H.; Xue, J.; Guo, X.; Liang, M.; Chen, M. BioPepDB: An integrated data platform for food-derived bioactive peptides. Food Sci. Nutr. 2018, 69, 963–968. [Google Scholar] [CrossRef]
- Kohmura, M.; Nio, N.; Kubo, K.; Minoshima, Y.; Munekata, E.; Ariyoshi, Y. Inhibition of angiotensin-converting enzyme by synthetic peptides of human beta-casein. Agric. Biol. Chem. 1989, 53, 2107–2114. [Google Scholar] [CrossRef]
- Adamska, A.; Kluczyk, A.; Cerlesi, M.C.; Calo, G.; Janeska, A.; Borics, A. Synthesis, biological evaluation and structural analysis of novel peripheral morphiceptin analogs. Bioorg. Med. Chem. 2016, 24, 1582–1588. [Google Scholar] [CrossRef]
- Hatzoglou, A.; Bakogeorgou, E.; Hatzoglou, C.; Martin, P.-M.; Castanas, E. Antiproliferative and receptor binding properties of α- and β-casomorphins in the T47D human breast cancer cell line. Eur. J. Pharmacol. 1996, 310, 217–223. [Google Scholar] [CrossRef]
- López-Expósito, I.; Minervini, F.; Amigo, L.; Recio, I. Identification of antibacterial peptides from bovine kappa-casein. J. Food Prot. 2006, 69, 2992–2997. [Google Scholar] [CrossRef]
- Ruiz, J.Á.G.; Ramos, M.; Recio, I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int. Dairy J. 2004, 14, 1075–1080. [Google Scholar] [CrossRef]
- Tauzin, T.; Miclo, L.; Gaillard, J.L. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αS2-casein. FEBS Lett. 2002, 531, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Otte, J.; Shalaby, S.M.A.; Zakora, M.; Nielsen, M.S. Fractionation and identification of ACE-inhibitory peptides from α-lactalbumin and β-casein produced by thermolysin-catalysed hydrolysis. Int. Dairy J. 2007, 17, 1460–1472. [Google Scholar] [CrossRef]
- Quirós, A.; Hernández-Ledesma, B.; Ramos, M.; Amigo, L.; Recio, I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy Sci. 2005, 88, 3480–3487. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, R.J. Potential Uses of Caseinophosphopeptides. Int. Dairy J. 1998, 8, 451–457. [Google Scholar] [CrossRef]
- Hata, I.; Higashiyama, S.; Otani, H. Identification of a phosphopeptide in bovine alpha s1-casein digest as a factor influencing proliferation and immunoglobulin production in lymphocyte cultures. J Dairy Res. 1998, 65, 569–578. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhang, S.S.; Wang, W.; Feng, F.Q.; Shan, W.G. Novel Angiotensin I Converting Enzyme Inhibitory Peptide from the Milk Casein: Virtual Screening and Docking Studies. Agric. Sci. China 2011, 10, 463–467. [Google Scholar] [CrossRef]
- Lu, Y.; Govindasamy-Lucey, S.; Lucey, J.A. Angiotensin-I-converting enzyme-inhibitory peptides in commercial Wisconsin Cheddar cheeses of different ages. Int. J. Dairy Sci. 2016, 99, 41–52. [Google Scholar] [CrossRef]
- Hayes, M.; Stanton, C.; Slattery, H.; O’Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667. [Google Scholar] [CrossRef] [Green Version]
- Eisele, T.; Stressler, T.; Kranz, B.; Fischer, L. Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur. Food Res. Technol. 2013, 236, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Berthou, J.; Migliore-Samour, D.; Lifchitz, A.; Delettré, J.; Floc’h, F.; Jollès, P. Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Lett. 1987, 218, 55–58. [Google Scholar] [CrossRef]
- Agüero, R.; Bringas, M.E.; San Román, F.; Ortiz, I.; Ibáñez, R. Membrane Processes for Whey Proteins Separation and Purification. A Review. Curr. Org. Chem. 2017, 21, 1740–1752. [Google Scholar] [CrossRef]
- De Wit, J.N. Lecturer’s Handbook on Whey and Whey Products; European Whey Products Association: Brussels, Belgium, 2001; Available online: http://ewpa.euromilk.org/publications.html (accessed on 10 April 2020).
- Hugunin, A. Whey Products in Yogurt and Fermented Dairy Products. U.S. Dairy Export Council, Applications Monographs. Yogurt 2009, pp. 151–154. Available online: http://usdec.files.cms-plus.com/PDFs/2008ReferenceManuals/Whey_Lactose_Reference_Manual_Complete2_Optimized.pdf (accessed on 9 April 2020).
- Hugunin, A.; Lucey, J.A. U.S. Whey Ingredients in Yogurt and Yogurt Beverages [on Line]. U.S. Dairy Export Council, Applications Monographs. Yogurt 2009, pp. 1–12. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiznNu43K7sAhWDjFkKHXzjBWUQFjAKegQIAxAC&url=https%3A%2F%2Fwww.thinkusadairy.org%2FDocuments%2FCustomer%2520Site%2FC3-Using%2520Dairy%2FC3.7-Resources%2520and%2520Insights%2F03-Application%2520and%2520Technical%2520Materials%2FYOGURT_ENG.pdf&usg=AOvVaw1pNfqrr5V8fEHr3xPZhy0E (accessed on 10 July 2020).
- Gursel, A.; Gursoy, A.; Anli, E.A.K.; Budak, S.O.; Aydemir, S.; Durlu-Ozkaya, F. Role of milk protein–based products in some quality attributes of goat milk yogurt. J. Dairy Sci. 2016, 99, 2694–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.-J.; Frank, J.F.; Lillard, D.A. Gas chromatographic detection of yogurt flavor compounds and changes during refrigerated storage. Cult. Dairy Products Int. 1988, 23, 6–9. [Google Scholar]
- Mistry, V.V.; Hassan, H.N. Manufacture of nonfat yogurt from a high milk protein powder. J. Dairy Sci. 1992, 75, 947–957. [Google Scholar] [CrossRef]
- Broadbent, J.R.; Cai, H.; Larsen, R.L.; Hughes, J.E.; Welker, D.L.; de Carvalho, V.G.; Tompkins, T.A.; Ardö, Y.; Vogensen, F.; de Lorentiis, A.; et al. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 2011, 94, 4313–4328. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Genay, M.; Atlan, D.; Lortal, S.; Gagnaire, V. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int. J. Food Microbiol. 2011, 146, 1–13. [Google Scholar] [CrossRef]
- Tzvetkova, I.; Dalgalarrondo, M.; Danova, S.; Iliev, I.; Ivanova, I.; Chobert, J.M.; Haertlé, T. Hydrolysis of major dairy proteins by lactic acid bacteria from bulgarian yogurts. J. Food Biochem. 2007, 31, 680–702. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Caroprese, M.; Marino, R.; Trani, A.; Faccia, M. Biochemical patterns in ovine cheese: Influence of probiotic strains. J. Dairy Sci. 2010, 93, 3487–3496. [Google Scholar] [CrossRef] [Green Version]
- Amani, E.; Eskandari, M.H.; Shekarforoush, S. The effect of proteolytic activity of starter cultures on technologically important properties of yogurt. Food Sci. Nutr. 2016, 5, 525–537. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Wang, J.S.; Zhao, M.M.; Jiang, Y.M.; Chun, C. Effect of Casein Hydrolysates on Yogurt Fermentation. Food Technol. Biotechnol. 2006, 44, 429–434. [Google Scholar]
- Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; Nielsen, S.D.; Abd-El Aal, S.; El-Leboudy, A.; Saleh, E.; LaPointe, G. Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Front. Nutr. 2019, 6, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Huo, R.; Kwok, L.-Y.; Li, C.; Ma, Y.; Mi, Z.; Chen, Y. Effects of applying Lactobacillus helveticus H9 as adjunct starter culture in yogurt fermentation and storage. J. Dairy Sci. 2019, 102, 223–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daliri, E.B.; Lee, B.H.; Oh, D.H. Current perspectives on antihypertensive probiotics. Probiotics Antimicrob. 2017, 9, 91–101. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Saadi, S.; Saari, N.; Anwar, F.; Abdul Hamid, A.; Ghazali, H.M. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef]
- Nurminen, M.L.; Sipola, M.; Kaarto, H.; Pihlanto-Leppälä, A.; Piilola, K.; Korpela, R.; Tossavainen, O.; Korhonen, H.; Vapaatalo, H. α-Lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci. 2000, 66, 1535–1543. [Google Scholar] [CrossRef]
- Janecka, A.; Fichna, J.; Mirowski, M.; Janecki, T. Structure-activity Relationship, Conformation and Pharmacology Studies of Morphiceptin Analogues—Selective μ-Opioid Receptor Ligands. Mini Rev. Med. Chem. 2002, 2, 565–572. [Google Scholar] [CrossRef]
- Bouhallab, S.; Bouglé, D. Biopeptides of milk: Caseinophosphopeptides and mineral bioavailability. Reprod. Nutr. Dev. 2004, 44, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Darewicz, M.; Dziuba, B.; Minkiewicz, P.; Dziuba, J. The preventive potential of milk and colostrum proteins and protein fragments. Food Rev. Int. 2011, 27, 357–388. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Milk-derived proteins and peptides in clinical trials. Postępy Hig. Med. Dośw 2013, 67, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Weinborn, V.; de Moura Bell, J.M.L.N.; Wang, M.; Parker, E.A.; Guerrero, A.; Hettinga, K.A.; Lebrilla, C.B.; German, J.B.; Barile, D. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Res. Int. 2014, 63, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzello, C.G.; Losito, I.; Gobbetti, M.; Carbonara, T.; De Bari, M.D.; Zambonin, P.G. Antibacterial activities of peptides from the water soluble extracts of Italian cheese varieties. J. Dairy Sci. 2005, 88, 2348–2360. [Google Scholar] [CrossRef] [Green Version]
- Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S. PrtH2, Not prtH, Is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl. Environ. Microbiol. 2009, 75, 3238–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, E.; Fitzgerald, G.; McAuliffe, O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol. 2017, 61, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Park, S.; Atwal, A.; Gibbs, B.; Lee, B. Angiotensin I-converting enzyme (ACE) inhibitory peptides from whey fermented by Lactobacillus species. Food Biochem. 2009, 33, 587–602. [Google Scholar] [CrossRef]
Fermented Product * | Texture Parameter | |||||
---|---|---|---|---|---|---|
Hardness (N) | Cohesiveness | Springiness | Gumminess (g) | Chewiness (g) | Resilience | |
WPI_DSMZ | 0.336 ± 0.035 ab | 0.153 ± 0.012 a | 0.514 ± 0.029 a | 0.051 ± 0.006 a | 0.026 ± 0.002 a | 0.082 ± 0.007 a |
WPI_B734 | 0.310 ± 0.045 a | 0.154 ± 0.066 a | 0.543 ± 0.328 a | 0.046 ± 0.015 a | 0.028 ± 0.020 a | 0.084 ± 0.038 a |
WPI_T80 | 0.352 ± 0.023 ab | 0.161 ± 0.051 a | 0.445 ± 0.183 a | 0.056 ± 0.015 a | 0.027 ± 0.017 a | 0.088 ± 0.030 a |
WPI_T105 | 0.410 ± 0.035 b | 0.096 ± 0.001 a | 0.213 ± 0.048 a | 0.039 ± 0.004 a | 0.008 ± 0.002 a | 0.050 ± 0.010 a |
Product * | Total Nitrogen (g/100g) | Non-Protein Nitrogen (g/100g) | Protein (g/100g) | Proteolysis Index (%) |
---|---|---|---|---|
RSM | 0.812 ± 0.08 a | 0.137 ± 0.01 a | 5.18 ± 0.52 a | 17.04 ± 1.13 a |
WPI_DSMZ | 0.851 ± 0.01 a | 0.192 ± 0.01 c | 5.43 ± 0.07 a | 22.50 ± 0.96 c |
WPI_B734 | 0.881 ± 0.03 a | 0.190 ± 0.01 c | 5.62 ± 0.22 a | 21.61 ± 0.87 c |
WPI_T80 | 0.857 ± 0.01 a | 0.180 ± 0.01 bc | 5.47 ± 0.01 a | 20.96 ± 0.36 bc |
WPI_T105 | 0.873 ± 0.04 a | 0.170 ± 0.01 b | 5.57 ± 0.29 a | 19.35 ± 1.38 b |
Control | 0.832 ± 0.03 a | 0.134 ± 0.01 a | 5.31 ± 0.18 a | 16.11 ± 0.57 a |
Biopeptide Sequence | Mass (Da) | Designation Allocated to the Sequence in the Database (ID 1, 2 or References 3) | Biological Activity Reported in the Database | Tested Strain of Lb. helveticus Generating the Biopeptide |
---|---|---|---|---|
RPKHPIKHQGLPQ | 1534.88 | biopep01213 1 | antihypertensive | B734, DSMZ |
TQSLVYP | 806.42 | biopep01306 | antihypertensive | DSMZ |
3333/BIOPEP-UWM2 | ACE inhibitory | |||
SRY 4 | 424.21 | biopep01260 | antihypertensive | B734 |
GKEKV | 559.33 | biopep00360 | antihypertensive | B734, DSMZ |
ENLHLP | 721.37 | biopep00179 | antihypertensive | B734, DSMZ |
[32] | ACE inhibitory | |||
AQTQSL | 646.33 | biopep00067 | antihypertensive | B734 |
FAQTQS | 680.31 | biopep00212 | antihypertensive | B734 |
YPFP | 522.25 | biopep04755, 2868/BIOPEP-UWM, [33] | opioid | B734 |
[34] | anticancer | |||
GLPQE | 542.27 | 8163/BIOPEP-UWM | antibacterial | B734 |
9375/BIOPEP-UWM | ACE inhibitory | |||
VQVTSTAV | 803.44 | biopep01445 | antihypertensive | B734, DSMZ |
8264/BIOPEP-UWM | antibacterial | |||
[35] | antimicrobial | |||
VPSERYL | 862.45 | biopep01442 | antihypertensive | B734 |
9250/BIOPEP-UWM, [36] | ACE inhibitory | |||
INQF | 520.26 | biopep00551 | antihypertensive | B734 |
TVY 4 | 381.19 | biopep01319 | antihypertensive | B734 |
[37] | ACE-inhibitory | |||
FPPQSVL | 786.43 | biopep00270 | antihypertensive | B734 |
LQPEVMGVSK | 1086.57 | biopep00867 | antihypertensive | DSMZ |
AYPS | 436.20 | 8472/BIOPEP-UWM | antioxidative | B734, DSMZ |
8380/BIOPEP-UWM | ACE inhibitory | |||
VRSP | 457.26 | biopep01460 | antihypertensive | B734, DSMZ |
8309/BIOPEP-UWM | ACE inhibitory | |||
LVYPFPGPI | 1001.56 | biopep00927 | antihypertensive | B734, DSMZ |
[38] | ACE-inhibitory | |||
NENLLRFFVAPFPE | 1691.87 | biopep00991 | antihypertensive | B734 |
LQPEVMG | 772.38 | biopep00866 | antihypertensive | DSMZ |
FVAPFPEVFGKEKVNE | 1835.94 | biopep00305 | antihypertensive | B734 |
LEQL | 501.28 | biopep00755 | antihypertensive | B734, DSMZ |
ENLLRF | 790.43 | biopep00182 | antihypertensive | B734 |
[39] | ACE inhibitory | |||
FPPQS | 574.27 | 9378/BIOPEP-UWM | ACE inhibitory | DSMZ |
FVAPFPEVFGK | 1236.65 | biopep00304 | antihypertensive | B734, DSMZ |
RELEELNVPGEIVESLSSSEESITR | 2801.39 | biopep04772, 3055/BIOPEP-UWM | mineral-binding | B734, DSMZ |
[40] | caseinophosphopeptide | |||
[41] | immunomodulatory | |||
RPKHPIKHQGLPQEVLNEN | 2233.21 | biopep01215 | antihypertensive | B734 |
ERF 4 | 450.22 | biopep00189 | antihypertensive | B734, DSMZ |
VVPP | 410.25 | biopep01483 | antihypertensive | B734 |
8308/BIOPEP-UWM, [42] | ACE inhibitory | |||
LLR 4 | 400.28 | biopep00827 | antihypertensive | B734, DSMZ |
8484/BIOPEP-UWM | antioxidative | |||
FAL 4 | 349.20 | biopep00207 | antihypertensive | DSMZ |
7823/BIOPEP-UWM | ACE inhibitory | |||
IKH 4 | 396.25 | biopep00532 | antihypertensive | B734 |
RHPHP | 642.33 | 8469/BIOPEP-UWM | antioxidant | B734 |
8373/BIOPEP-UWM | ACE inhibitory | |||
LAY 4 | 365.19 | biopep00734 | antihypertensive | DSMZ |
3558/BIOPEP-UWM | ACE inhibitory | |||
HIQKEDVPSER | 1336.67 | 9559/BIOPEP-UWM | antioxidative | B734, DSMZ |
FLLY | 554.31 | biopep00734 | antihypertensive | B734, DSMZ |
QEPVLGPVRGPFPIIV | 1716.99 | [43] | ACE-inhibitory | DSMZ |
SQSKVLPVPQ | 1081.61 | [44] | ACE-inhibitory | DSMZ |
VYPFPGPIPN | 1099.57 | [45] | antioxidant, ACE-inhibitory | B734 |
LLY 4 | 407.24 | biopep04791 | immuno- and cytomodulatory peptide | B734 |
3065/BIOPEP-UWM, [46] | immunostimulatory |
Biological Activity of Identified BAPs | Number of the BAPs Generated by the Tested Lb. helveticus Strain | |
---|---|---|
B734 | DSMZ 20075 | |
immunostimulatory/immuno- and cyto-modulatory peptide | 2 | 1 |
caseinophosphopeptide | 1 | 1 |
mineral-binding | 1 | 1 |
opioid | 1 | - |
antibacterial/antimicrobial | 2 | 1 |
anticancer | 1 | - |
antioxidant | 5 | 3 |
antihypertensive | 24 | 16 |
ACE inhibitory | 11 | 9 |
Total number of biopeptide sequences | 48 | 32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzypczak, K.; Gustaw, W.; Fornal, E.; Kononiuk, A.; Michalak-Majewska, M.; Radzki, W.; Waśko, A. Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Appl. Sci. 2020, 10, 7089. https://doi.org/10.3390/app10207089
Skrzypczak K, Gustaw W, Fornal E, Kononiuk A, Michalak-Majewska M, Radzki W, Waśko A. Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Sciences. 2020; 10(20):7089. https://doi.org/10.3390/app10207089
Chicago/Turabian StyleSkrzypczak, Katarzyna, Waldemar Gustaw, Emilia Fornal, Anna Kononiuk, Monika Michalak-Majewska, Wojciech Radzki, and Adam Waśko. 2020. "Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus" Applied Sciences 10, no. 20: 7089. https://doi.org/10.3390/app10207089
APA StyleSkrzypczak, K., Gustaw, W., Fornal, E., Kononiuk, A., Michalak-Majewska, M., Radzki, W., & Waśko, A. (2020). Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Sciences, 10(20), 7089. https://doi.org/10.3390/app10207089