Generation of Multiple Pseudo Bessel Beams with Accurately Controllable Propagation Directions and High Efficiency Using a Reflective Metasurface
Abstract
:1. Introduction
2. Design Method of the Off-Axis Pseudo Bessel Beam and Multiple Pseudo Bessel Beams
3. Metasurface Simulation and Experimental Measurement Results
3.1. Metasurface Simulation and Results
3.2. Metasurface Experimental Measurement and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Durnin, J.; Miceli, J., Jr.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef] [PubMed]
- Ettorre, M.; Pavone, S.C.; Casaletti, M.; Albani, M. Experimental Validation of Bessel Beam Generation Using an Inward Hankel Aperture Distribution. IEEE Trans. Antennas Propag. 2015, 63, 2539–2544. [Google Scholar] [CrossRef] [Green Version]
- Ettorre, M.; Rudolph, S.M.; Grbic, A. Generation of Propagating Bessel Beams Using Leaky-Wave Modes. IEEE Trans. Antennas Propag. 2012, 60, 3605–3613. [Google Scholar] [CrossRef]
- Monk, S.; Arlt, J.; Robertson, D.A.; Courtial, J.; Padgett, M.J. The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt. Commun. 1999, 170, 213–215. [Google Scholar] [CrossRef]
- Li, Y.B.; Cai, B.G.; Wan, X.; Cui, T.J. Diffraction-free surface waves by metasurfaces. Opt. Lett. 2014, 39, 5888–5891. [Google Scholar] [CrossRef]
- Mazzinghi, A.; Balma, M.; Devona, D.; Guarnieri, G.; Mauriello, G.; Albani, M.; Freni, A. Large depth of field pseudo-Bessel beam generation with a RLSA antenna. IEEE Trans. Antenna Propag. 2014, 62, 3911–3919. [Google Scholar] [CrossRef]
- Rodriguez, E.S.G.; Machnoor, M.; Lazzi, G. On the generation of nondiffracting beams in extremely subwavelength applications. IEEE Trans. Antennas Propag. 2017, 65, 5228–5237. [Google Scholar] [CrossRef]
- Heebl, J.D.; Ettorre, M.; Grbic, A. Wireless links in the radiative near field via Bessel beams. Phys. Rev. Appl. 2016, 6, 034018. [Google Scholar] [CrossRef]
- Imani, M.F.; Grbic, A. Generating Evanescent Bessel Beams Using Near-Field Plates. IEEE Trans. Antennas Propag. 2012, 60, 3155–3164. [Google Scholar] [CrossRef]
- Kou, N.; Yu, S.; Li, L. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain. Appl. Phys. Express 2016, 10, 016701. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Controlling Vector Bessel Beams with Metasurfaces. Phys. Rev. Appl. 2014, 2, 044012. [Google Scholar] [CrossRef]
- Liu, H.; Xue, H.; Liu, Y.; Feng, Q.; Li, L. Generation of high-order Bessel orbital angular momentum vortex beam using a single-layer reflective metasurface. IEEE Access 2020, 8, 126504–126510. [Google Scholar] [CrossRef]
- Lemaitre-Auger, P.; Abielmona, S.; Caloz, C. Generation of Bessel Beams by Two-Dimensional Antenna Arrays Using Sub-Sampled Distributions. IEEE Trans. Antennas Propag. 2013, 61, 1838–1849. [Google Scholar] [CrossRef]
- Mei, Q.Q.; Wen, X.T.; Cui, T.J. A Broadband Bessel Beam Launcher Using Metamaterial Lens. Sci. Rep. 2015, 5, 11732. [Google Scholar]
- Salem, M.A.; Kamel, A.H.; Niver, E. Microwave Bessel Beams Generation Using Guided Modes. IEEE Trans. Antennas Propag. 2011, 59, 2241–2247. [Google Scholar] [CrossRef]
- Trappe, N.; Mahon, R.; Lanigan, W.; Murphy, J.A.; Withington, S. The quasi-optical analysis of Bessel beams in the far infrared. Infrared Phys. Technol. 2005, 46, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Vasara, A.; Friberg, A.T.; Turunen, J. Holographic generation of diffraction-free beams. Appl. Opt. 1988, 27, 3959. [Google Scholar]
- Yi, C.Z.; Yu, J.C. Ka-Band Wideband Large Depth-of-Field Beam Generation through a Phase Shifting Surface Antenna. IEEE Trans. Antennas Propag. 2016, 64, 5038–5045. [Google Scholar]
- Zhaofeng, L.; Boratay, A.K.; Humeyra, C.; Ekmel, O. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett. 2009, 102, 143901. [Google Scholar]
- Wei, T.C.; Khorasaninejad, M.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Zaidi, A.; Capasso, F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 2016, 6, e16259. [Google Scholar]
- Salo, J.; Meltaus, J.; Noponen, E.; Westerholm, J.; Salomaa, M.M.; Lonnvist, A.; Saily, J.; Hakli, J.; Ala-Laurinaho, J.; Raisanen, A.V. Millimetre-wave Bessel beams using computer holograms. Electron. Lett. 2002, 37, 834–835. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.Z.; Yu, J.C. Wideband Quasi-Non-Diffraction Beam with Accurately Controllable Propagating Angle and Depth-of-Field. IEEE Trans. Antennas Propag. 2017, 65, 5035–5042. [Google Scholar]
- Cheng, Y.; Zhong, Y.; Renbo, H.E.; Liu, Y.; Fan, Y.; Song, K.; Zhang, Y. Antenna for Generating Arbitrarily Directed Bessel Beam. U.S. Patent No. 10,644,398, 5 May 2020. [Google Scholar]
- Wu, Y.; Cheng, Y. Generating and 2-D Steering Large Depth-of-Field Beam by Leaky-Wave Antenna Array with a Modified Parabolic Reflector. IEEE Trans. Antennas Propag. 2019, 68, 2779–2787. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, Y.; Huang, Z. Ka-band near-field-focused 2-D steering antenna array with a focused Rotman lens. IEEE Transactions on Antennas and Propagation. IEEE Trans. Antennas Propag. 2018, 66, 5204–5213. [Google Scholar] [CrossRef]
- Buffi, A.; Nepa, P.; Manara, G. Design criteria for near-field-focused planar arrays. IEEE Antennas Propag. Mag. 2012, 54, 40–50. [Google Scholar] [CrossRef]
- Álvarez, J.; Ayestarán, R.G.; León, G.; Herrán, L.F.; Arboleya, A.; López-Fernández, J.A.; Las-Heras, F. Near field multifocusing on antenna arrays via non-convex optimisation. IET Microw. Antennas Propag. 2014, 8, 754–764. [Google Scholar] [CrossRef]
- Ettorre, M.; Pavone, S.C.; Casaletti, M.; Albani, M.; Mazzinghi, A.; Freni, A. Near-field focusing by non-diffracting Bessel beams. In Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications, Signals and Communication Technology; Springer: Rennes, France, 2018; Volume 8, pp. 243–288. [Google Scholar]
- Shaltout, A.M.; Kildishev, A.V.; Shalaev, V.M. Evolution of photonic metasurfaces: From static to dynamic. J. Opt. Soc. Am. B 2016, 33, 501–510. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Zhang, H.; Xue, W. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 2018, 65, 3230–3239. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Song, C.; Huang, Y. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl. Phys. Lett. 2020, 116, 060501. [Google Scholar] [CrossRef]
- Chávez-Cerda, S. A new approach to Bessel beams. J. Mod. Opt. 1999, 46, 923–930. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Shi, G.; Zhu, C.; Shi, Y. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 2016, 108, 241901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xue, H.; Liu, Y.; Li, L. Generation of Multiple Pseudo Bessel Beams with Accurately Controllable Propagation Directions and High Efficiency Using a Reflective Metasurface. Appl. Sci. 2020, 10, 7219. https://doi.org/10.3390/app10207219
Liu H, Xue H, Liu Y, Li L. Generation of Multiple Pseudo Bessel Beams with Accurately Controllable Propagation Directions and High Efficiency Using a Reflective Metasurface. Applied Sciences. 2020; 10(20):7219. https://doi.org/10.3390/app10207219
Chicago/Turabian StyleLiu, Haixia, Hao Xue, Yongjie Liu, and Long Li. 2020. "Generation of Multiple Pseudo Bessel Beams with Accurately Controllable Propagation Directions and High Efficiency Using a Reflective Metasurface" Applied Sciences 10, no. 20: 7219. https://doi.org/10.3390/app10207219
APA StyleLiu, H., Xue, H., Liu, Y., & Li, L. (2020). Generation of Multiple Pseudo Bessel Beams with Accurately Controllable Propagation Directions and High Efficiency Using a Reflective Metasurface. Applied Sciences, 10(20), 7219. https://doi.org/10.3390/app10207219