Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials and Methods
2.2. Adsorption Experiments
3. Results and Discussion
3.1. Structural and Morphological Study
3.2. Adsorption Experiments of As(III) and Se(VI)
3.2.1. Adsorbent Dose Optimization Study
3.2.2. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Lorenzo, T.D.; Hose, G.C.; Galassi, D.M.P. Assessment of Different Contaminants in Freshwater: Origin, Fate, and Ecological Impact. Water 2020, 12, 1810. [Google Scholar] [CrossRef]
- Jawed, A.; Saxena, V.; Pandey, L.M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J. Water Process Eng. 2020, 33, 101009. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic around the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Conde, J.E.; Alaejos, M.S. Selenium Concentrations in Natural and Environmental Waters. Chem. Rev. 1997, 97, 1979–2004. [Google Scholar] [CrossRef]
- Lata, S.; Samadder, S.R. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manag. 2016, 16615, 387–406. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Chaudhry, S.A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf. Environ. Prot. 2017, 111, 592–626. [Google Scholar] [CrossRef]
- Yigit, N.O.; Tozum, S. Removal of selenium species from waters using various surface-modified natural particles and waste materials. Clean 2012, 40, 735–745. [Google Scholar] [CrossRef]
- Casentini, B.; Lazzazzara, M.; Amalfitano, S.; Salvatori, R.; Guglietta, D.; Daniele Passeri, D.; Belardi, G.; Trapasso, F. Mining Rock Wastes for Water Treatment: Potential Reuse of Fe-and Mn-Rich Materials for Arsenic Removal. Water 2019, 11, 1897. [Google Scholar] [CrossRef] [Green Version]
- Navrotsky, A.; Mazeina, L.; Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 2008, 319, 1635–1642. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides, 2nd ed.; Wiley VCH-Verlag Publishers: New York, NY, USA, 2003. [Google Scholar]
- Xu, G.; Yang, X.; Spinosa, L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment. J. Environ. Manag. 2015, 151, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, T.; Frost, R.L. An overview of the role of goethite surfaces in the environment. Chemosphere 2014, 103, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, A.; Banerjee, S.; Mani, R.; Chattopadhyaya, M.C. Synthesis, characterization and application of goethite mineral as an adsorbent. J. Environ. Chem. Eng. 2013, 1, 281–290. [Google Scholar] [CrossRef]
- Kumar, E.; Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media-A review. Adv. Colloid. Interf. Sci. 2014, 203, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Velimirovic, M.; Bianco, C.; Ferrantello, N.; Tosco, T.; Casasso, A.; Sethi, R.; Schmid, D.; Wagner, S.; Miyajima, K.; Klaas, N.; et al. A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. Water 2020, 12, 1207. [Google Scholar] [CrossRef]
- Kim, J.; Nielsen, U.G.; Grey, C.P. Local Environments and Lithium Adsorption on the Iron Oxyhydroxides Lepidocrocite (ç-FeOOH) and Goethite (r-FeOOH): A 2H and 7Li Solid-State MAS NMR Study. J. Am. Chem. Soc. 2008, 130, 1285–1295. [Google Scholar] [CrossRef]
- Llavona, A.; Prados, A.; Velasco, V.; Crespo, P.; Sanchez, M.C.; Perez, L. Electrochemical synthesis and magnetic properties of goethite single crystal nanowires. Cryst. Eng. Comm. 2013, 15, 4905–4909. [Google Scholar] [CrossRef]
- Stemig, A.M.; Do, T.A.; Yuwono, V.M.; Arnold, W.A.; Penn, R.L. Goethite nanoparticle aggregation: Effects of buffers, metal ions, and 4-chloronitrobenzene reduction. Environ. Sci. 2014, 1, 478–487. [Google Scholar] [CrossRef]
- Gimenez, J.; Martınez, M.; de Pablo, J.; Rovira, M.; Duroc, L. Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 2007, 141, 575–580. [Google Scholar] [CrossRef]
- Fernando, S.; Baynes, M.; Chen, B.; Banfield, J.F.; Zhang, H. Compressibility and structural stability of nanoparticulate goethite. RSC Adv. 2012, 2, 6768–6772. [Google Scholar] [CrossRef]
- Hao, L.; Ouyang, T.; Lai, L.; Liu, Y.X.; Chen, S.; Hu, H.; Chang, C.T.; Wang, J.J. Temperature effects on arsenate adsorption onto goethite and its preliminary application to arsenate removal from simulative geothermal water. RSC Adv. 2014, 4, 51984–51990. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Poinern, G.E.J.; Issa, T.B.; Singh, P. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J. Chem Eng. 2012, 29, 95–102. [Google Scholar] [CrossRef]
- Enlei, Z.; Guosheng, W.; Xiaozhu, L.; Zhumin, W. Synthesis and influence of alkaline concentration on α-FeOOH nanorods shapes. Bull. Mater. Sci. 2014, 37, 761–765. [Google Scholar]
- Mohapatra, M.; Gupta, S.; Satpati, B.; Anand, S.; Mishra, B.K. PH and temperature dependent facile precipitation of nano-goethite particles in Fe(NO3)3–NaOH–NH3NH2HSO4–H2O medium. Coll. Surf. A Physicochemical. Eng. Aspects 2010, 355, 53–60. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Schwertmann, U. Color identification of iron oxides and hydroxysulfates-Use and limitations. Soil Sci. Soc. Am. J. 1999, 63, 1463–1471. [Google Scholar] [CrossRef]
- Jia, X.H.; Song, H.J. Facile synthesis of monodispersed a-Fe2O3 Microspheres through template-free hydrothermal route. J. Nanopart Res. 2012, 14, 663–670. [Google Scholar] [CrossRef]
- Maiti, D.; Manju, U.; Velaga, S.; Devi, P.S. Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication. Cryst. Growth Design 2013, 13, 3637–3644. [Google Scholar] [CrossRef]
- Bellot-Gurlet, L.; Neff, D.; Réguer, S.; Monnier, J.; Saheb, M.; Dillmann, P. Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media. J. Nano. Res. 2009, 8, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Gialanella, S.; Girardi, F.; Ischia, G.; Lonardelli, I.; Mattarelli, M.; Montagna, M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010, 102, 867–873. [Google Scholar] [CrossRef]
- Guo, H.; Barnard, A.S. Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 2011, 21, 11566–11577. [Google Scholar] [CrossRef]
- Vlasova, N.N.; Kersten, M. Effect of Temperature on Selenate Adsorption by goethite. In Water-Rock Interaction Book; Taylor & Francis: Abidgon, UK, 2010; pp. 693–696. [Google Scholar]
- Kersten, M.; Vlasova, N. Arsenite adsorption on goethite at elevated temperatures. Appl. Geochem. 2009, 24, 32–43. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J.; Essilfie-Dughan, J. Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem. 2013, 28, 185–193. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.; Kim, J.; MinKyu, J.; Han, Y.S.; Park, Y.T.; Yun, H.S.; Choi, J. As (III) and As (V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads. J. Hazard. Mater. 2015, 292, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Asta, M.P.; Cama, J.; Martínez, M.; Giménez, J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J. Hazard. Mater. 2009, 171, 965–972. [Google Scholar] [CrossRef]
- Shih, Y.J.; Huang, R.L.; Huang, Y.H. Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. J. Clean. Prod. 2015, 87, 897–905. [Google Scholar] [CrossRef]
- Rovira, M.; Gimenez, J.; Martınez, M.; Martınez-Llado, X.; de Pablo, J.; Mart, V.; Duro, L. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater 2008, 150, 279–284. [Google Scholar] [CrossRef]
- Zelmanov, G.; Semiat, R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013, 103, 167–172. [Google Scholar] [CrossRef]
- Peak, D.; Sparks, D.L. Mechanisms of Selenate Adsorption on Iron Oxides and Hydroxides. Environ. Sci. Technol. 2002, 36, 1460–1466. [Google Scholar] [CrossRef]
- Dichiara, A.B.; Webber, M.R.; Gorman, W.R.; Rogers, R.E. Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 15674–15680. [Google Scholar] [CrossRef]
- Jacobson, A.T.; Fan, M. Evaluation of natural goethite on the removal of arsenate and selenite from water. J. Environ. Sci. 2019, 76, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Matulová, M.; Bujdoš, M.; Miglierini, M.B.; Mitróová, Z.; Kubovčíková, U.M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface-A three-step process with an unexpected desorption phase. Chem. Geol. 2020, 556, 119852. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T.T. Selenium adsorption by goethite. Soil Sci. Soc. Am. J. 1987, 51, 1145–1151. [Google Scholar] [CrossRef]
- Hayes, K.F.; Roe, A.L.; Brown Jr, G.A.; Hodgson, K.O.; Leckie, J.O.; Parks, G.A. In situ X-ray absorption study of surface complexes: Selenium oxyanions on α-FeOOH. Science 1987, 238, 783–786. [Google Scholar] [CrossRef]
- Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.C.; Monteil-Rivera, F.; Milonjic, S. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J. Environ. Radioact. 2003, 70, 61–72. [Google Scholar] [CrossRef]
- Wijnja, H.; Schulthess, C.P. Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces. J. Colloid Interface Sci. 2000, 229, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.S.; Amrani, M.A.; Singh, S.K.; Al-Fatesh, A.S.; Bansiwal, A.; Srikanth, V.V.; Labhasetwar, N.K. γ-FeOOH and γ-FeOOH decorated multi-layer graphene: Potential materials for selenium (VI) removal from water. J. Water Process Eng. 2020, 37, 101396. [Google Scholar] [CrossRef]
Langmuir Adsorption Isotherm | Freundlich Adsorption Isotherm | ||||
---|---|---|---|---|---|
Parameter | As(III) | Se(VI) | Parameter | As(III) | Se(VI) |
R2 | 0.992 | 0.989 | R2 | 0.97 | 0.946 |
Qmax (mg/g) | 8.251 | 4.753 | Kf | 12.52 | 5.19 |
RL | 0.126 | 0.14 | n | 0.537 | 1.021 |
Pseudo-first-order Isotherm | Pseudo-second-order Isotherm | ||||
---|---|---|---|---|---|
Parameter | As(III) | Se(VI) | Parameter | As(III) | Se(VI) |
R2 | 0.798 | 0.75 | R2 | 0.9485 | 0.987 |
qe | 1.48 | 29.42 | qe | 8.302 | 7.04 |
K1 | 0.005 | 0.0021 | K2 | 0.0235 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amrani, M.A.; Ghaleb, A.M.; E. Ragab, A.; Ramadan, M.Z.; Khalaf, T.M. Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water. Appl. Sci. 2020, 10, 7237. https://doi.org/10.3390/app10207237
Amrani MA, Ghaleb AM, E. Ragab A, Ramadan MZ, Khalaf TM. Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water. Applied Sciences. 2020; 10(20):7237. https://doi.org/10.3390/app10207237
Chicago/Turabian StyleAmrani, Mokhtar Ali, Atef M. Ghaleb, Adham E. Ragab, Mohamed Z. Ramadan, and Tamer M. Khalaf. 2020. "Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water" Applied Sciences 10, no. 20: 7237. https://doi.org/10.3390/app10207237
APA StyleAmrani, M. A., Ghaleb, A. M., E. Ragab, A., Ramadan, M. Z., & Khalaf, T. M. (2020). Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water. Applied Sciences, 10(20), 7237. https://doi.org/10.3390/app10207237