Improving Ant Collaborative Filtering on Sparsity via Dimension Reduction
Abstract
:1. Introduction
2. Related Work
2.1. Dimension Reduction in General Settings
2.2. Dimension Reduction in Swarm Intelligence Recommendation Settings
3. Improve Ant Collaborative Filtering with Dimension Reduction
3.1. Ant Collaborative Filtering
3.2. Dimension Reduction Version for ACF
Algorithm 1: Training procedure for IACF |
3.3. Complexity Analysis
4. Experiments
4.1. Parameter Settings
4.2. Rating-Based Recommendation
4.3. Ranking-Based Recommendation
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liao, X.; Hu, W.; Yongji, W. Ant Collaborative Filtering Addressing Sparsity and Temporal Effects. IEEE Access 2020, 8, 32783–32791. [Google Scholar] [CrossRef]
- Chao, G.; Luo, Y.; Ding, W. Recent advances in supervised dimension reduction: A survey. Mach. Learn. Knowl. Extr. 2019, 1, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, J.; Liu, L. Modeling method of internet public information data mining based on probabilistic topic model. J. Supercomput. 2019, 75, 5882–5897. [Google Scholar] [CrossRef]
- Liu, D.; Ye, X. A matrix factorization based dynamic granularity recommendation with three-way decisions. Knowl.-Based Syst. 2020, 191, 105243. [Google Scholar] [CrossRef]
- Lei, C.; Dai, H.; Yu, Z.; Li, R. A service recommendation algorithm with the transfer learning based matrix factorization to improve cloud security. Inf. Sci. 2020, 513, 98–111. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Fakhry, A.E.; Abdel-Basset, M.; El-henawy, I. Arabic text clustering using improved clustering algorithms with dimensionality reduction. Clust. Comput. 2019, 22, 4535–4549. [Google Scholar] [CrossRef]
- Zhu, X.; Gan, J.; Lu, G.; Li, J.; Zhang, S. Spectral clustering via half-quadratic optimization. World Wide Web 2019, 23, 1969–1988. [Google Scholar] [CrossRef]
- Hofmann, T. Latent Semantic Models for Collaborative Filtering. ACM Trans. Inf. Syst. 2004, 22, 89–115. [Google Scholar] [CrossRef]
- Langseth, H.; Nielsen, T.D. A latent model for collaborative filtering. Int. J. Approx. Reason. 2012, 53, 447–466. [Google Scholar] [CrossRef] [Green Version]
- Koren, Y. Collaborative Filtering with Temporal Dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09), San Jose, CA, USA, 12–15 August 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 447–456. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, W.; Ford, J.; Makedon, F. Learning from incomplete ratings using non-negative matrix factorization. In Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; pp. 549–553. [Google Scholar]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Application of Dimensionality Reduction in Recommender System—A Case Study; Technical Report; Minnesota University, Department of Computer Science: Minneapolis, MN, USA, 2000. [Google Scholar]
- Nilashi, M.; Ibrahim, O.; Bagherifard, K. A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl. 2018, 92, 507–520. [Google Scholar] [CrossRef]
- Symeonidis, P. Content-based Dimensionality Reduction for Recommender Systems. In Data Analysis, Machine Learning and Applications; Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 619–626. [Google Scholar]
- Son, N.T.; Dat, D.H.; Trung, N.Q.; Anh, B.N. Combination of Dimensionality Reduction and User Clustering for Collaborative-Filtering. In Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence (CSAI 2017), Jakarta, Indonesia, 5–7 December 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 125–130. [Google Scholar] [CrossRef]
- Zarzour, H.; Al-Sharif, Z.; Al-Ayyoub, M.; Jararweh, Y. A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques. In Proceedings of the 2018 9th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 3–5 April 2018; pp. 102–106. [Google Scholar]
- Sarmah, D.K. A survey on the latest development of machine learning in genetic algorithm and particle swarm optimization. In Optimization in Machine Learning and Applications; Springer: Singapore, 2020; pp. 91–112. [Google Scholar]
- Feng, Z.; Niu, W.; Zhang, R.; Wang, S.; Cheng, C. Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization. J. Hydrol. 2019, 576, 229–238. [Google Scholar] [CrossRef]
- Janani, R.; Vijayarani, S. Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization. Expert Syst. Appl. 2019, 134, 192–200. [Google Scholar] [CrossRef]
- Gusmão, R.P.; de A.T. de Carvalho, F. Clustering of multi-view relational data based on particle swarm optimization. Expert Syst. Appl. 2019, 123, 34–53. [Google Scholar] [CrossRef]
- Kamalzadeh, H.; Ahmadi, A.; Mansour, S. Clustering time-series by a novel slope-based similarity measure considering particle swarm optimization. Appl. Soft Comput. 2020, 96, 106701. [Google Scholar] [CrossRef]
- Kim, K.; Ahn, H. Collaborative Filtering with a User-Item Matrix Reduction Technique. Int. J. Electron. Commer. 2011, 16, 107–128. [Google Scholar] [CrossRef]
- Rui, X.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems. In Applications of Evolutionary Computation; Esparcia-Alcázar, A.I., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 606–615. [Google Scholar]
- Bengfort, B.; Bilbro, R. Yellowbrick: Visualizing the Scikit-Learn Model Selection Process. J. Open Source Softw. 2019, 4, 1075. [Google Scholar] [CrossRef]
- Yang, N. Douban Movie and NetEase Music Datasets and Model Code; The President & Fellows of Harvard College: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC., informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Zhou, T.; Ren, J.; Medo, M.; Zhang, Y.C. Bipartite network projection and personal recommendation. Phys. Rev. E 2007, 76, 046115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.; Xie, B.; Yang, F.; Shen, R.M. An Adaptive Spreading Activation Scheme for Performing More Effective Collaborative Recommendation. In Database and Expert Systems Applications; Andersen, K.V., Debenham, J., Wagner, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 95–104. [Google Scholar]
- Wang, J.; Robertson, S.; de Vries, A.P.; Reinders, M.J. Probabilistic relevance ranking for collaborative filtering. Inf. Retr. 2008, 11, 477–497. [Google Scholar] [CrossRef] [Green Version]
Algorithm | RMSE | Time (s) | p-Value |
---|---|---|---|
ACF | 0.3316 | ||
IACF | 1.012 ± 0.02 |
Douban | NetEase | |
---|---|---|
#User | 4965 | 115,994 |
#Item | 41,785 | 19,980 |
#Preference | 958,425 | 2,399,639 |
Dataset | Algorithm | Precision | Recall | F1 | Time (s) | p-Value |
---|---|---|---|---|---|---|
Douban | User-based | 0.67 | 0.538 | |||
Item-based | 0.73 | 0.455 | ||||
NBI | 0.84 | 0.163 | ||||
RSM | 0.78 | 0.423 | 2350 | |||
BM25-Item | 0.89 | 0.147 | ||||
ACF | 0.61 | 0.589 | 0.4962 | |||
IACF | 0.50 | 0.583 | ||||
NetEase | User-based | 0.71 | 0.587 | |||
Item-based | 0.78 | 0.529 | ||||
NBI | 0.90 | 0.058 | ||||
RSM | 0.71 | 0.579 | ||||
BM25-Item | 0.81 | 0.416 | ||||
ACF | 0.36 | 0.489 | 0.4989 | |||
IACF | 0.30 | 0.438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, X.; Li, X.; Xu, Q.; Wu, H.; Wang, Y. Improving Ant Collaborative Filtering on Sparsity via Dimension Reduction. Appl. Sci. 2020, 10, 7245. https://doi.org/10.3390/app10207245
Liao X, Li X, Xu Q, Wu H, Wang Y. Improving Ant Collaborative Filtering on Sparsity via Dimension Reduction. Applied Sciences. 2020; 10(20):7245. https://doi.org/10.3390/app10207245
Chicago/Turabian StyleLiao, Xiaofeng, Xiangjun Li, Qingyong Xu, Hu Wu, and Yongji Wang. 2020. "Improving Ant Collaborative Filtering on Sparsity via Dimension Reduction" Applied Sciences 10, no. 20: 7245. https://doi.org/10.3390/app10207245
APA StyleLiao, X., Li, X., Xu, Q., Wu, H., & Wang, Y. (2020). Improving Ant Collaborative Filtering on Sparsity via Dimension Reduction. Applied Sciences, 10(20), 7245. https://doi.org/10.3390/app10207245