Transgenic Rabbit Models: Now and the Future
Abstract
:1. Introduction
2. General Features of the Laboratory Rabbits
3. History of the Methods to Produce Transgenic Rabbits
3.1. Traditional Pronuclear Microinjection to Generate Transgenic Rabbits
3.2. Novel Genome Editing Technologies to Generate Knock-In (Transgenic) Rabbits
4. Transgenic Rabbits for Human Disease Models
5. Transgenic Rabbit as a Bioreactor
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, J.W.; Scangos, G.A.; Plotkin, D.J.; Barbosa, J.A.; Ruddle, F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 7380–7384. [Google Scholar] [CrossRef] [Green Version]
- Capecchi, M.R. The new mouse genetics: Altering the genome by gene targeting. Trends Genet. 1989, 5, 70–76. [Google Scholar] [CrossRef]
- Fan, J.; Watanabe, T. Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol. Ther. 2003, 99, 261–282. [Google Scholar] [CrossRef]
- Fan, J.; Kitajima, S.; Watanabe, T.; Xu, J.; Zhang, J.; Liu, E.; Chen, Y.E. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015, 146, 104–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Chen, Y.; Yan, H.; Niimi, M.; Wang, Y.; Liang, J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J. Atheroscler. Thromb. 2018, 25, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, R.E.; Pursel, V.G.; Rexroad, C.E., Jr.; Wall, R.J.; Bolt, D.J.; Ebert, K.M.; Palmiter, R.D.; Brinster, R.L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 1985, 315, 680–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosze, Z.; Hiripi, L.; Carnwath, J.W.; Niemann, H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res. 2003, 12, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, S.; Morimoto, M.; Watanabe, T.; Fan, J. Transgenic Rabbits: Production and Application for Human Disease Models. Recent Res. Dev. Biophys. Biochem. 2003, 3, 179–194. [Google Scholar]
- Bősze, Z.; Major, P.; Baczkó, I.; Odening, K.E.; Bodrogi, L.; Hiripi, L.; Varró, A. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Prog. Biophys. Mol. Biol. 2016, 121, 123–130. [Google Scholar] [CrossRef]
- Bertolini, L.R.; Meade, H.; Lazzarotto, C.R.; Martins, L.T.; Tavares, K.C.; Bertolini, M.; Murray, J.D. The transgenic animal platform for biopharmaceutical production. Transgenic Res. 2016, 25, 329–343. [Google Scholar] [CrossRef]
- Kitajima, S.; Liu, E.; Fan, J. Rabbit transgenesis. In Rabbit Biotechnology; Houdebine, L., Fan, J., Eds.; Springer: Heidelberg, Germany, 2009; pp. 37–48. [Google Scholar]
- Shen, W.; Li, L.; Pan, Q.; Min, L.; Dong, H.; Deng, J. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol. Reprod. Dev. 2006, 73, 589–594. [Google Scholar] [CrossRef]
- Skrzyszowska, M.; Smorag, Z.; Slomski, R.; Katska-Ksiazkiewicz, L.; Kalak, R.; Michalak, E.; Wielgus, K.; Lehmann, J.; Lipinski, D.; Szalata, M.; et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod. 2006, 74, 1114–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiripi, L.; Negre, D.; Cosset, F.L.; Kvell, K.; Czompoly, T.; Baranyi, M.; Gocza, E.; Hoffmann, O.; Bender, B.; Bosze, Z. Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Res. 2010, 19, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Katter, K.; Geurts, A.M.; Hoffmann, O.; Mates, L.; Landa, V.; Hiripi, L.; Moreno, C.; Lazar, J.; Bashir, S.; Zidek, V.; et al. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J. 2013, 27, 930–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Yang, D.; Xu, J.; Zhu, T.; Chen, Y.E.; Zhang, J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 2016, 7, 10548. [Google Scholar] [CrossRef] [Green Version]
- Schoonjans, L.; Albright, G.M.; Li, J.L.; Collen, D.; Moreadith, R.W. Pluripotential rabbit embryonic stem (ES) cells are capable of forming overt coat color chimeras following injection into blastocysts. Mol. Reprod. Dev. 1996, 45, 439–443. [Google Scholar] [CrossRef]
- Honsho, K.; Hirose, M.; Hatori, M.; Yasmin, L.; Izu, H.; Matoba, S.; Togayachi, S.; Miyoshi, H.; Sankai, T.; Ogura, A.; et al. Naive-like conversion enhances the difference in innate in vitro differentiation capacity between rabbit ES cells and iPS cells. J. Reprod. Dev. 2015, 61, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Flisikowska, T.; Thorey, I.S.; Offner, S.; Ros, F.; Lifke, V.; Zeitler, B.; Rottmann, O.; Vincent, A.; Zhang, L.; Jenkins, S.; et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 2011, 6, e21045. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Zhong, J.; Guo, X.; Chen, Y.; Zou, Q.; Huang, J.; Li, X.; Zhang, Q.; Jiang, Z.; Tang, C.; et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res. 2013, 23, 1059–1062. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Zhang, Q.; Yang, H.; Zou, Q.; Tang, C.; Fan, N.; Lai, L. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen. 2014, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Niimi, M.; Yang, D.; Liang, J.; Xu, J.; Kimura, T.; Mathew, A.V.; Guo, Y.; Fan, Y.; Zhu, T.; et al. Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Xu, Y.; Liang, M.; Zhang, Y.; Chen, M.; Deng, J.; Li, Z. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits. Biosci. Rep. 2018, 38, BSR20171490. [Google Scholar] [CrossRef] [Green Version]
- Sui, T.; Liu, D.; Liu, T.; Deng, J.; Chen, M.; Xu, Y.; Song, Y.; Ouyang, H.; Lai, L.; Li, Z. LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. Aging Dis. 2019, 10, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Niimi, M.; Yang, D.; Kitajima, S.; Ning, B.; Wang, C.; Li, S.; Liu, E.; Zhang, J.; Eugene Chen, Y.; Fan, J. ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis 2016, 245, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Xu, J.; Zhu, T.; Fan, J.; Lai, L.; Zhang, J.; Chen, Y.E. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J. Mol. Cell Biol. 2014, 6, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zhang, J.; Xu, J.; Zhu, T.; Fan, Y.; Fan, J.; Chen, Y.E. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases. J. Vis. Exp. 2013, 81, e50957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dice, L. The colorado pika in captivity. J. Mammals 1927, 8, 3. [Google Scholar] [CrossRef]
- Esteves, P.J.; Abrantes, J.; Baldauf, H.M.; BenMohamed, L.; Chen, Y.; Christensen, N.; Gonzalez-Gallego, J.; Giacani, L.; Hu, J.; Kaplan, G.; et al. The wide utility of rabbits as models of human diseases. Exp. Mol. Med. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Ogonuki, N.; Inoue, K.; Miki, H.; Mochida, K.; Hatori, M.; Okada, H.; Takeiri, S.; Shimozawa, N.; Nagashima, H.; Sankai, T.; et al. Differential development of rabbit embryos following microinsemination with sperm and spermatids. J. Mol. Reprod. Dev. 2005, 72, 411–417. [Google Scholar] [CrossRef]
- Thibault, C.; Dauzier, L.; Wintenberger, S. Cytological study of fecundation in vitro of rabbit ovum. C. R. Seances Soc. Biol. Fil. 1954, 148, 789–790. [Google Scholar]
- Finking, G.; Hanke, H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 1997, 135, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Shen, W.; Min, L.; Dong, H.; Sun, Y.; Pan, Q. Human lactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide-sperm-mediated gene transfer. Reprod. Fertil. Dev. 2006, 18, 689–695. [Google Scholar] [CrossRef]
- Wang, H.J.; Lin, A.X.; Chen, Y.F. Association of rabbit sperm cells with exogenous DNA. Anim. Biotechnol. 2003, 14, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hou, J.; Wang, S.; Chen, Y.; An, X.R. Production of transgenic rabbit embryos through intracytoplasmic sperm injection. Zygote 2010, 18, 301–307. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, F.; Liu, Q.; Liu, Y.; Guan, X.; Wie, Y.; Tan, S.; Shi, D. Efficient generation of sFat-1 transgenic rabbits rich in n-3 polyunsaturated fatty acids by intracytoplasmic sperm injection. Reprod. Fertil. Dev. 2016, 28, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, Y.; Shi, J.; Yin, C.; Xing, F.; Xu, L.; Zhang, C.; Liu, T.; Li, Y.; Li, H.; et al. Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts. Transgenic Res. 2009, 18, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, J.; Takahashi, S.; Ohkoshi, K.; Kaminaka, K.; Kaminaka, S.; Nozaki, C.; Maeda, H.; Tokunaga, T. Production of transgenic chimera rabbit fetuses using somatic cell nuclear transfer. Cloning Stem Cells 2002, 4, 9–19. [Google Scholar] [CrossRef]
- Ivics, Z.; Hiripi, L.; Hoffmann, O.I.; Mates, L.; Yau, T.Y.; Bashir, S.; Zidek, V.; Landa, V.; Geurts, A.; Pravenec, M.; et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat. Protoc. 2014, 9, 794–809. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, Z.; Xiao, N.; Su, X.; Zhao, S.; Zhang, Y.; Cui, K.; Liu, Q.; Shi, D. Site-specific integration of rotavirus VP6 gene in rabbit beta-casein locus by CRISPR/Cas9 system. In Vitro Cell Dev. Biol. Anim. 2019, 55, 586–597. [Google Scholar] [CrossRef]
- Yang, D.; Song, J.; Zhang, J.; Xu, J.; Zhu, T.; Wang, Z.; Lai, L.; Chen, Y.E. Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Sci. Rep. 2016, 6, 25161. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Zhang, J.; Xu, J.; Garcia-Barrio, M.; Chen, Y.E.; Yang, D. Genome engineering technologies in rabbits. J. Biomed. Res. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Sakuma, T.; Yamamoto, T.; Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep. 2014, 4, 6382. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Araki, M.; Wu, L.; Challah, M.; Shimoyamada, H.; Lawn, R.M.; Kakuta, H.; Shikama, H.; Watanabe, T. Assembly of lipoprotein(a) in transgenic rabbits expressing human apolipoprotein(a). Biochem. Biophys. Res. Commun. 1999, 255, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Rouy, D.; Duverger, N.; Lin, S.D.; Emmanuel, F.; Houdebine, L.M.; Denefle, P.; Viglietta, C.; Gong, E.; Rubin, E.M.; Hughes, S.D. Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B. J. Biol. Chem. 1998, 273, 1247–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duverger, N.; Viglietta, C.; Berthou, L.; Emmanuel, F.; Tailleux, A.; Parmentier-Nihoul, L.; Laine, B.; Fievet, C.; Castro, G.; Fruchart, J.C.; et al. Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 1424–1429. [Google Scholar] [CrossRef]
- Duverger, N.; Kruth, H.; Emmanuel, F.; Caillaud, J.M.; Viglietta, C.; Castro, G.; Tailleux, A.; Fievet, C.; Fruchart, J.C.; Houdebine, L.M.; et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 1996, 94, 713–717. [Google Scholar] [CrossRef]
- Recalde, D.; Baroukh, N.; Viglietta, C.; Prince, S.; Verona, J.; Vergnes, L.; Pidoux, J.; Nazeem Nanjee, M.; Brites, F.; Ochoa, A.; et al. Human apoA-I/C-III/A-IV gene cluster transgenic rabbits: Effects of a high-cholesterol diet. FEBS Lett. 2004, 572, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Koike, T.; Kitajima, S.; Yu, Y.; Li, Y.; Nishijima, K.; Liu, E.; Sun, H.; Waqar, A.B.; Shibata, N.; Inoue, T.; et al. Expression of human apoAII in transgenic rabbits leads to dyslipidemia: A new model for combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 2047–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, M.; Taylor, J.M.; Barbagallo, C.M.; Berneis, K.; Blanche, P.J.; Krauss, R.M. Effects on lipoprotein subclasses of combined expression of human hepatic lipase and human apoB in transgenic rabbits. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; McCormick, S.P.; Krauss, R.M.; Taylor, S.; Quan, R.; Taylor, J.M.; Young, S.G. Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.D.; Rouy, D.; Navaratnam, N.; Scott, J.; Rubin, E.M. Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein (a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum. Gene. Ther. 1996, 7, 39–49. [Google Scholar] [CrossRef]
- Jolivet, G.; Braud, S.; DaSilva, B.; Passet, B.; Harscoet, E.; Viglietta, C.; Gautier, T.; Lagrost, L.; Daniel-Carlier, N.; Houdebine, L.M.; et al. Induction of body weight loss through RNAi-knockdown of APOBEC1 gene expression in transgenic rabbits. PLoS ONE 2014, 9, e106655. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Wang, Y.; Zhu, H.; Fan, J.; Yu, L.; Liu, G.; Liu, E. Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res. 2011, 20, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Schwendner, S.W.; Rall, S.C., Jr.; Sanan, D.A.; Mahley, R.W. Apolipoprotein E2 transgenic rabbits. Modulation of teh type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J. Biol. Chem. 1997, 272, 22685–22694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ji, Z.S.; Brecht, W.J.; Rall, S.C., Jr.; Taylor, J.M.; Mahley, R.W. Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2952–2959. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Ji, Z.S.; Huang, Y.; de Silva, H.; Sanan, D.; Mahley, R.W.; Innerarity, T.L.; Taylor, J.M. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J. Clin. Investig. 1998, 101, 2151–2164. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wang, X.; Cheng, D.; Li, J.; Li, L.; Ran, L.; Zhao, S.; Fan, J.; Liu, E. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits. Mediat. Inflamm. 2017, 2017, 3824276. [Google Scholar] [CrossRef]
- Koike, T.; Kitajima, S.; Yu, Y.; Nishijima, K.; Zhang, J.; Ozaki, Y.; Morimoto, M.; Watanabe, T.; Bhakdi, S.; Asada, Y.; et al. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits. Circulation 2009, 120, 2088–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Nishijima, K.; Kitajima, S.; Niimi, M.; Yan, H.; Chen, Y.; Ning, B.; Matsuhisa, F.; Liu, E.; Zhang, J.; et al. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1282–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Niimi, M.; Kitajima, S.; Matsuhisa, F.; Yan, H.; Dong, S.; Liang, J.; Fan, J. Sex hormones affect endothelial lipase-mediated lipid metabolism and atherosclerosis. Lipids Health Dis. 2019, 18, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Wang, J.; Bensadoun, A.; Lauer, S.J.; Dang, Q.; Mahley, R.W.; Taylor, J.M. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc. Natl. Acad. Sci. USA 1994, 91, 8724–8728. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, C.M.; Fan, J.; Blanche, P.J.; Rizzo, M.; Taylor, J.M.; Krauss, R.M. Overexpression of human hepatic lipase and ApoE in transgenic rabbits attenuates response to dietary cholesterol and alters lipoprotein subclass distributions. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeg, J.M.; Vaisman, B.L.; Demosky, S.J., Jr.; Meyn, S.M.; Talley, G.D.; Hoyt, R.F., Jr.; Feldman, S.; Berard, A.M.; Sakai, N.; Wood, D.; et al. Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J. Biol. Chem. 1996, 271, 4396–4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeg, J.M.; Santamarina-Fojo, S.; Berard, A.M.; Cornhill, J.F.; Herderick, E.E.; Feldman, S.H.; Haudenschild, C.C.; Vaisman, B.L.; Hoyt, R.F., Jr.; Demosky, S.J., Jr.; et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl. Acad. Sci. USA 1996, 93, 11448–11453. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Jain, A.; Marleau, S.; Clish, C.; Kantarci, A.; Behbehani, B.; Colgan, S.P.; Stahl, G.L.; Merched, A.; Petasis, N.A.; et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol. 2003, 171, 6856–6865. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N. Clues for new therapeutics in osteoporosis and periodontal disease: New roles for lipoxygenases? Expert Opin. Ther. Targets 2004, 8, 643–652. [Google Scholar] [CrossRef]
- Shen, J.; Herderick, E.; Cornhill, J.F.; Zsigmond, E.; Kim, H.S.; Kuhn, H.; Guevara, N.V.; Chan, L. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Investig. 1996, 98, 2201–2208. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, S.; Morimoto, M.; Liu, E.; Koike, T.; Higaki, Y.; Taura, Y.; Mamba, K.; Itamoto, K.; Watanabe, T.; Tsutsumi, K.; et al. Overexpression of lipoprotein lipase improves insulin resistance induced by a high-fat diet in transgenic rabbits. Diabetologia 2004, 47, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Unoki, H.; Kojima, N.; Sun, H.; Shimoyamada, H.; Deng, H.; Okazaki, M.; Shikama, H.; Yamada, N.; Watanabe, T. Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 2001, 276, 40071–40079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichikawa, T.; Liang, J.; Kitajima, S.; Koike, T.; Wang, X.; Sun, H.; Morimoto, M.; Shikama, H.; Watanabe, T.; Yamada, N.; et al. Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits. Atherosclerosis 2005, 179, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Niimi, M.; Nishijima, K.; Kitajima, S.; Matsuhisa, F.; Satoh, K.; Yamazaki, H.; Zhang, J.; Chen, Y.E.; Fan, J. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits. J. Biomed. Res. 2019, 33, 271–279. [Google Scholar]
- Chen, Y.; Waqar, A.B.; Nishijima, K.; Ning, B.; Kitajima, S.; Matsuhisa, F.; Chen, L.; Liu, E.; Zhang, J.; Chen, Y.E.; et al. Macrophage-derived MMP-9 enhances the vascular calcification and progression of atherosclerotic lesions in transgenic rabbits. J. Cell. Mol. Med. 2020, 24, 4261–4274. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liang, J.; Koike, T.; Sun, H.; Ichikawa, T.; Kitajima, S.; Morimoto, M.; Shikama, H.; Watanabe, T.; Sasaguri, Y.; et al. Overexpression of human matrix metalloproteinase-12 enhances the development of inflammatory arthritis in transgenic rabbits. Am. J. Pathol. 2004, 165, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Wang, X.; Wu, L.; Matsumoto, S.I.; Liang, J.; Koike, T.; Ichikawa, T.; Sun, H.; Shikama, H.; Sasaguri, Y.; et al. Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits. Transgenic Res. 2004, 13, 261–269. [Google Scholar] [CrossRef]
- Masson, D.; Deckert, V.; Gautier, T.; Klein, A.; Desrumaux, C.; Viglietta, C.; Pais de Barros, J.P.; Le Guern, N.; Grober, J.; Labbe, J.; et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, Y.; Gao, S.; Wang, X.; Sun, L.; Cheng, D.; Bai, L.; Guan, H.; Wang, R.; Fan, J.; et al. Autocrine Human Urotensin II Enhances Macrophage-Derived Foam Cell Formation in Transgenic Rabbits. Biomed. Res. Int. 2015, 2015, 843959. [Google Scholar] [CrossRef]
- James, J.; Sanbe, A.; Yager, K.; Martin, L.; Klevitsky, R.; Robbins, J. Genetic manipulation of the rabbit heart via transgenesis. Circulation 2000, 101, 1715–1721. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Martin, L.; Krenz, M.; Quatman, C.; Jones, F.; Klevitsky, R.; Gulick, J.; Robbins, J. Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation 2005, 111, 2339–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Palmer, B.M.; James, J.; Wang, Y.; Chen, Z.; VanBuren, P.; Maughan, D.W.; Robbins, J.; LeWinter, M.M. Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits. Circ. Heart Fail. 2009, 2, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, B.A.; Graham, D.R.; James, J.; Mitsak, M.; Tarwater, P.M.; Robbins, J.; Van Eyk, J.E. Altered myofilament stoichiometry in response to heart failure in a cardioprotective alpha-myosin heavy chain transgenic rabbit model. Proteomics Clin. Appl. 2011, 5, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanbe, A.; James, J.; Tuzcu, V.; Nas, S.; Martin, L.; Gulick, J.; Osinska, H.; Sakthivel, S.; Klevitsky, R.; Ginsburg, K.S.; et al. Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 2005, 111, 2330–2338. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, T.; Shen, Y.-T.; Rossi, F.; Hong, C.; Robbins, J.; Ishikawa, Y.; Sadoshima, J.; Vatner, D.E.; Vatner, S.F. Altered autonomic control in conscious transgenic rabbits with overexpressed cardiac Gsalpha. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H971–H975. [Google Scholar] [CrossRef]
- Nishizawa, T.; Vatner, S.F.; Hong, C.; Shen, Y.-T.; Hardt, S.E.; Robbins, J.; Ishikawa, Y.; Sadoshima, J.; Vatner, D.E. Overexpressed cardiac Gsalpha in rabbits. J. Mol. Cell Cardiol. 2006, 41, 44–50. [Google Scholar] [CrossRef]
- James, J.; Zhang, Y.; Wright, K.; Witt, S.; Glascock, E.; Osinska, H.; Klevitsky, R.; Martin, L.; Yager, K.; Sanbe, A.; et al. Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 2002, 34, 873–882. [Google Scholar] [CrossRef]
- Pattison, J.S.; Waggoner, J.R.; James, J.; Martin, L.; Gulick, J.; Osinska, H.; Klevitsky, R.; Kranias, E.G.; Robbins, J. Phospholamban overexpression in transgenic rabbits. Transgenic Res. 2008, 17, 157–170. [Google Scholar] [CrossRef]
- Marian, A.J.; Wu, Y.; Lim, D.S.; McCluggage, M.; Youker, K.; Yu, Q.T.; Brugada, R.; DeMayo, F.; Quinones, M.; Roberts, R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 104, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Kopelen, H.A.; Lim, D.S.; Zoghbi, W.A.; Quinones, M.A.; Roberts, R.; Marian, A.J. Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2000, 102, 1346–1350. [Google Scholar] [CrossRef] [Green Version]
- Lowey, S.; Bretton, V.; Joel, P.B.; Trybus, K.M.; Gulick, J.; Robbins, J.; Kalganov, A.; Cornachione, A.S.; Rassier, D.E. Hypertrophic cardiomyopathy R403Q mutation in rabbit beta-myosin reduces contractile function at the molecular and myofibrillar levels. Proc. Natl. Acad. Sci. USA 2018, 115, 11238–11243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakula, P.; Bisping, E.; Kockskamper, J.; Post, H.; Brauer, S.; Deuter, M.; Oehlmann, R.; Besenfelder, U.; Lai, F.A.; Brem, G.; et al. CMV promoter is inadequate for expression of mutant human RyR2 in transgenic rabbits. J. Pharmacol. Toxicol. Methods 2011, 63, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Peng, X.; Liu, G.X.; Ren, X.Q.; Ziv, O.; Choi, B.R.; Mathur, R.; Hajjiri, M.; Odening, K.E.; Steinberg, E.; et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J. Clin. Investig. 2008, 118, 2246–2259. [Google Scholar] [CrossRef] [PubMed]
- Odening, K.E.; Hyder, O.; Chaves, L.; Schofield, L.; Brunner, M.; Kirk, M.; Zehender, M.; Peng, X.; Koren, G. Pharmacogenomics of anesthetic drugs in transgenic LQT1 and LQT2 rabbits reveal genotype-specific differential effects on cardiac repolarization. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H2264–H2272. [Google Scholar] [CrossRef]
- Hornyik, T.; Castiglione, A.; Franke, G.; Perez-Feliz, S.; Major, P.; Hiripi, L.; Koren, G.; Bosze, Z.; Varro, A.; Zehender, M.; et al. Transgenic LQT2, LQT5, and LQT2-5 rabbit models with decreased repolarisation reserve for prediction of drug-induced ventricular arrhythmias. Br. J. Pharmacol. 2020. [Google Scholar] [CrossRef]
- Major, P.; Baczko, I.; Hiripi, L.; Odening, K.E.; Juhasz, V.; Kohajda, Z.; Horvath, A.; Seprenyi, G.; Kovacs, M.; Virag, L.; et al. A novel transgenic rabbit model with reduced repolarization reserve: Long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene. Br. J. Pharmacol. 2016, 173, 2046–2061. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Peng, X.; Schell, T.D.; Budgeon, L.R.; Cladel, N.M.; Christensen, N.D. An HLA-A2.1-transgenic rabbit model to study immunity to papillomavirus infection. J. Immunol. 2006, 177, 8037–8045. [Google Scholar] [CrossRef] [Green Version]
- Baranyi, M.; Cervenak, J.; Bender, B.; Kacskovics, I. Transgenic rabbits that overexpress the neonatal Fc receptor (FcRn) generate higher quantities and improved qualities of anti-thymocyte globulin (ATG). PLoS ONE 2013, 8, e76839. [Google Scholar] [CrossRef]
- Jasper, P.J.; Rhee, K.J.; Kalis, S.L.; Sethupathi, P.; Yam, P.C.; Zhai, S.K.; Knight, K.L. B lymphocyte deficiency in IgH-transgenic rabbits. Eur. J. Immunol. 2007, 37, 2290–2299. [Google Scholar] [CrossRef]
- Snyder, B.W.; Vitale, J.; Milos, P.; Gosselin, J.; Gillespie, F.; Ebert, K.; Hague, B.F.; Kindt, T.J.; Wadsworth, S.; Leibowitz, P. Developmental and tissue-specific expression of human CD4 in transgenic rabbits. Mol.Reprod. Dev. 1995, 40, 419–428. [Google Scholar] [CrossRef]
- Leno, M.; Hague, B.F.; Teller, R.; Kindt, T.J. HIV-1 mediates rapid apoptosis of lymphocytes from human CD4 transgenic but not normal rabbits. Virology 1995, 213, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Dunn, C.S.; Mehtali, M.; Houdebine, L.M.; Gut, J.P.; Kirn, A.; Aubertin, A.M. Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits. J. Gen. Virol. 1995, 76, 1327–1336. [Google Scholar] [CrossRef]
- Taboit-Dameron, F.; Malassagne, B.; Viglietta, C.; Puissant, C.; Leroux-Coyau, M.; Chereau, C.; Attal, J.; Weill, B.; Houdebine, L.M. Association of the 5’HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 1999, 8, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Olson, R.O.; Christian, C.B.; Lang, C.M.; Kreider, J.W. Papillomas and carcinomas in transgenic rabbits carrying EJ-ras DNA and cottontail rabbit papillomavirus DNA. J. Virol. 1993, 67, 1698–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Griffith, J.W.; Han, R.; Lang, C.M.; Kreider, J.W. Development of keratoacanthomas and squamous cell carcinomas in transgenic rabbits with targeted expression of EJras oncogene in epidermis. Am. J. Pathol. 1999, 155, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Knight, K.L.; Spieker-Polet, H.; Kazdin, D.S.; Oi, V.T. Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer. Proc. Natl. Acad. Sci. USA 1988, 85, 3130–3134. [Google Scholar] [CrossRef] [Green Version]
- Sethupathi, P.; Spieker-Polet, H.; Polet, H.; Yam, P.C.; Tunyaplin, C.; Knight, K.L. Lymphoid and non-lymphoid tumors in E kappa-myc transgenic rabbits. Leukemia 1994, 8, 2144–2155. [Google Scholar]
- Costa, C.; Solanes, G.; Visa, J.; Bosch, F. Transgenic rabbits overexpressing growth hormone develop acromegaly and diabetes mellitus. FASEB J. 1998, 12, 1455–1460. [Google Scholar] [CrossRef]
- Takahashi, R.-i.; Kuramochi, T.; Aoyagi, K.; Hashimoto, S.; Miyoshi, I.; Kasai, N.; Hakamata, Y.; Kobayashi, E.; Ueda, M. Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Res. 2007, 16, 115–120. [Google Scholar] [CrossRef]
- Yin, M.; Fang, Z.; Jiang, W.; Xing, F.; Jiang, M.; Kong, P.; Li, Y.; Zhou, X.; Tang, L.; Li, S.; et al. The Oct4 promoter-EGFP transgenic rabbit: A new model for monitoring the pluripotency of rabbit stem cells. Int. J. Dev. Biol. 2013, 57, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Sarradin, P.; Viglietta, C.; Limouzin, C.; Andreoletti, O.; Daniel-Carlier, N.; Barc, C.; Leroux-Coyau, M.; Berthon, P.; Chapuis, J.; Rossignol, C.; et al. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathog. 2015, 11, e1005077. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Sakai, T.; Komeima, K.; Kurimoto, Y.; Ueno, S.; Nishizawa, Y.; Usukura, J.; Fujikado, T.; Tano, Y.; Terasaki, H. Generation of a transgenic rabbit model of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2009, 50, 1371–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, S.; Liu, E.; Morimoto, M.; Koike, T.; Yu, Y.; Watanabe, T.; Imagawa, S.; Fan, J. Transgenic rabbits with increased VEGF expression develop hemangiomas in the liver: A new model for Kasabach-Merritt syndrome. Lab. Invest. 2005, 85, 1517–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.; Morimoto, M.; Kitajima, S.; Koike, T.; Yu, Y.; Shiiki, H.; Nagata, M.; Watanabe, T.; Fan, J. Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions. J. Am. Soc. Nephrol. 2007, 18, 2094–2104. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.; Fernandez-Borges, N.; Pintado, B.; Erana, H.; Ordonez, M.; Marquez, M.; Chianini, F.; Fondevila, D.; Sanchez-Martin, M.A.; Andreoletti, O.; et al. Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a Variety of Prion Isolates. PLoS Pathog. 2015, 11, e1004977. [Google Scholar] [CrossRef]
- Marian, A.J. On mice, rabbits, and human heart failure. Circulation 2005, 111, 2276–2279. [Google Scholar] [CrossRef]
- Janne, J.; Alhonen, L.; Hyttinen, J.M.; Peura, T.; Tolvanen, M.; Korhonen, V.P. Transgenic bioreactors. Biotechnol. Annu. Rev. 1998, 4, 55–74. [Google Scholar]
- Ziomek, C.A. Commercialization of proteins produced in the mammary gland. Theriogenology 1998, 49, 139–144. [Google Scholar] [CrossRef]
- Vicente, J.S.; Viudes-de-Castro, M.P. A sucrose-DMSO extender for freezing rabbit semen. Reprod. Nutr. Dev. 1996, 36, 485–492. [Google Scholar] [CrossRef]
- Dalimata, A.M.; Graham, J.K. Cryopreservation of rabbit spermatozoa using acetamide in combination with trehalose and methyl cellulose. Theriogenology 1997, 48, 831–841. [Google Scholar] [CrossRef]
- Nishijima, K.; Kitajima, S.; Koshimoto, C.; Morimoto, M.; Watanabe, T.; Fan, J.; Matsuda, Y. Motility and fertility of rabbit sperm cryopreserved using soybean lecithin as an alternative to egg yolk. Theriogenology 2015, 84, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M.; Hamaguchi, Y.; Zhu, S.E.; Miyake, T.; Sakurai, T.; Machida, T. High survival of rabbit morulae after vitrification in an ethylene glycol-based solution by a simple method. Biol. Reprod. 1992, 46, 1042–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco-Jimenez, F.; Jimenez-Trigos, E.; Almela-Miralles, V.; Vicente, J.S. Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLoS ONE 2016, 11, e0148661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hasani, S.; Hepnar, C.; Diedrich, K.; van der Ven, H.; Krebs, D. Cryopreservation of rabbit zygotes. Hum. Reprod. 1992, 7 (Suppl. 1), 81–83. [Google Scholar] [CrossRef] [PubMed]
Reported Year/Technique | Remarks | Ref. |
---|---|---|
1985 Pronuclear microinjection | The gene copy number and insertion site in a chromosome are uncontrollable (the position effect will sometimes occur). Low efficiency (less than 5% of total born rabbits and 0.5% of total injected embryos) [11] | [6] |
2006 Sperm vector (SMGT, TMGT and ICSI-mediated) | High efficiency (48.4–85.7% of total born rabbits) Simple and high performance but unstable (authors could not obtain transgenic offspring) | [12,33,34,35,36] |
2009 SCNT (somatic cell nuclear transfer) | Very difficult technique (efficiency was 1.2–3.5% of reconstituted and transferred embryos) | [13,37,38] |
2010 Lentiviral vector (simian immunodeficiency virus) | The founder rabbit will be a mosaic. Transgenic offspring can be obtained if transgenes integrate into sperm or oocytes, but at a low transmission rate. High efficiency in F0 (32% of total born rabbits and 9.4% of total injected embryos) | [14] |
2013 Transposon mediated gene transfer (Sleeping beauty) | A single copy of the transgene was integrated and maintained for multiple generations (≥4) without any sign of epigenetic silencing of transgene expression. High efficiency (15.2% of total born rabbits and 1.5% of total injected embryos) | [15,39] |
2016 Novel genome editing technology (CRISPR/Cas9 mediated gene transfer) | Knock-in rabbits The knock-in efficiency rate decreases with kb-sized (large) donor DNA. HDR enhancer RS-1 increases knock-in efficiency. High efficiency (26.3–35.0% of total born rabbits and 6.8–7.0% of total injected embryos) Off-target effects remain. | [16,40,41] |
Possible Disease Models/Transgene | Remarks | Ref. |
---|---|---|
Lipid metabolism and atherosclerosis | ||
Human apo(a) | [47] | |
Human apo(a) and apoB | [48] | |
Human apo A-I | [49,50] | |
Human apoA-I/C-III/A-IV gene cluster | [51] | |
Human apoA-II | [52] | |
Human apoB | [53] | |
Human apoB-100 | [54] | |
Human APOBEC1 | [55] | |
Rabbit apobec-shRNA | RNA-i knockdown of rabbit APOBEC1 | [56] |
Human apoC-III | Knockout was also produced [27] | [57] |
Human apoE2 | Knockout was also produced [25,26] | [58] |
Human apoE3 | [59,60] | |
Human CETP | Knockout was also produced [22] | [61] |
Human CRP | [62] | |
Human EL | [63,64] | |
Human HL | [65,66] | |
Human LCAT | [67,68] | |
15-Lipoxygenase type 1 | Osteoporosis and periodontal disease [69,70] | [71] |
Human LPL | Obesity [72] | [73,74] |
Rabbit MMP-1 | [75] | |
Human MMP-9 | [76] | |
Human MMP-12 | Inflammation [77] | [78] |
Human PLTP | [79] | |
Human Urotensin II | [80] | |
Cardiac failure | ||
Hypertrophic cardiomyopathy/cardiac protein | ||
Rabbit α-MyHC | [81,82,83,84] | |
Rabbit cThI-G146 mutation | [85] | |
Rabbit Cardiac Gsα | [86,87] | |
Rabbit ELC1v-M149V mutation | [88] | |
Rabbit Phospholamban | [89] | |
Human β-MyHC-R403Q mutation | [90] | |
Rabbit β-MyHC-R403 mutation | [91,92] | |
RyR2 R4497C | [93] | |
Proarrhythmia | ||
Human KvLQT1-Y315S mutation (LQT1) | Long QT syndrome | [94,95] |
Human HERG-G628S mutation (LQT2) | [94,95] | |
Human KCNE1-G52R mutation (LQT5) | [96,97] | |
Immunology | ||
Human HLA-A2.1 | Immunity to viral infection | [98] |
Rabbit FcRn | Humoral immune response | [99] |
Rabbit IgH | B cell-deficient (B cell development) | [100] |
Human CD4 | AIDS | [101,102,103] |
Human CD55 and CD59 | Xenotransplantation | [104] |
Tumor (oncogenesis) | ||
Rabbit EJ-ras DNA | Papilloma, keratoacanthomas and squamous cell carcinoma | [105,106] |
Rabbit c-myc oncogene | Lymphocytic leukemia | [107] |
Rabbit E-κ-myc oncogene | Lymphoid tumor | [108] |
Other models | ||
Bovine GH | Acromegaly and diabetes mellitus | [109] |
EGFP | Marker for tissue engineering and regenerative medicine | [110] |
Oct4 promoter-EGFP | Marker to investigate rabbit embryo development | [111] |
Ovine PrP | Rabbits are susceptible to a various prion isolates [116]. | [112] |
Rabbit Rhodopsin-P347L mutation | Retinitis pigmentosa | [113] |
Human VEGF | Hepatic hemangioma (Kasabach-Merritt syndrome), and renal dysfunction | [114,115] |
Mouse | Rabbit | Human | |
---|---|---|---|
Lipoprotein profile | HDL-rich | LDL-rich | LDL-rich |
CETP | None | Abundant | Abundant |
Hepatic apoB mRNA editing | Yes | No | No |
apoB48 | VLDLs/LDLs and chylomicrons | Chylomicrons | Chylomicrons |
Hepatic lipase | High, 70% in circulation | Low, liver-bound | Low, liver-bound |
Hepatic LDL receptor | Usually high | Down-regulated | Down-regulated |
apoA-II | Monomer | Absent | Dimmer |
Dietary cholesterol | Resistant | Sensitive | Sensitive |
Atherosclerosis | Resistant | Susceptible | - |
Myosin type of myocardium | α-MyHC | β-MyHC | β-MyHC |
Ion channel of myocardium | Ito and Ikslow | Ikr and Iks | Ikr and Iks |
ECG pattern | J-wave (Single lead) | T-wave (12 lead) | T-wave (12 lead) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuhisa, F.; Kitajima, S.; Nishijima, K.; Akiyoshi, T.; Morimoto, M.; Fan, J. Transgenic Rabbit Models: Now and the Future. Appl. Sci. 2020, 10, 7416. https://doi.org/10.3390/app10217416
Matsuhisa F, Kitajima S, Nishijima K, Akiyoshi T, Morimoto M, Fan J. Transgenic Rabbit Models: Now and the Future. Applied Sciences. 2020; 10(21):7416. https://doi.org/10.3390/app10217416
Chicago/Turabian StyleMatsuhisa, Fumikazu, Shuji Kitajima, Kazutoshi Nishijima, Toshiaki Akiyoshi, Masatoshi Morimoto, and Jianglin Fan. 2020. "Transgenic Rabbit Models: Now and the Future" Applied Sciences 10, no. 21: 7416. https://doi.org/10.3390/app10217416
APA StyleMatsuhisa, F., Kitajima, S., Nishijima, K., Akiyoshi, T., Morimoto, M., & Fan, J. (2020). Transgenic Rabbit Models: Now and the Future. Applied Sciences, 10(21), 7416. https://doi.org/10.3390/app10217416