Removal of Lead(II) from Synthetic Wastewater by Lavandula pubescens Decne Biosorbent: Insight into Composition–Adsorption Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Biomass
2.1.3. Adsorbate
2.2. Extraction of L. Pubescens Constituents
2.3. Identification of the Isolated Chemical Constituents
2.3.1. GC/MS Analysis of AIF
2.3.2. GLC Analysis of AIF and FAME
2.4. FTIR Analysis
2.5. Adsorption Studies
2.5.1. Batch Adsorption Experiments
2.5.2. Adsorption Modelling
3. Results and Discussion
3.1. Chemical Constituents in the Lipid Fraction
3.2. Adsorption Efficiency of LPD Biomass
3.2.1. Effect of Contact Time
3.2.2. Adsorption Kinetics
3.2.3. Effect of Solution pH
3.2.4. Effect of Initial Pb(II) Ion Concentrations
3.2.5. Effect of Adsorbent Dosage
3.2.6. Effect of Temperature
3.2.7. Adsorption Isotherms
3.2.8. Adsorption Thermodynamics
3.3. Relative Performance of LPD Biosorbent
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayyappan, R.; Sophia, A.C.; Swaminathan, K.; Sandhya, S. Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes. Process. Biochem. 2005, 40, 1293–1299. [Google Scholar] [CrossRef]
- Lee, J.-C.; Son, Y.-O.; Pratheeshkumar, P.; Shi, X. Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med. 2012, 53, 742–757. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018, 229, 225. [Google Scholar] [CrossRef]
- Dridi, C.; Youcef, L. Removal of lead by adsorption on kaolin. Larhyss J. P-ISSN 1112-3680/E-ISSN 2521–9782 2016, 13, 7–22. [Google Scholar]
- Shaalan, H.; Sorour, M.; Tewfik, S. Simulation and optimization of a membrane system for chromium recovery from tanning wastes. Desalination 2001, 141, 315–324. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Hernandez-Campos, D.; Peng, C.; Monroy-Fernandez, M.; Razo-Soto, I. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res. 2006, 40, 364–372. [Google Scholar] [CrossRef]
- Alyüz, B.; Veli, S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 2009, 167, 482–488. [Google Scholar] [CrossRef]
- Srinivasan, R. Role of Plant. Biomass in Heavy Metal. Treatment of Contaminated Water; Anuradha Mishra, J.H.C., Ed.; Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Khan, M.A.; Alqadami, A.A.; Otero, M.; Siddiqui, M.R.; Alothman, Z.A.; Alsohaimi, I.; Rafatullah, M.; Hamedelniel, A.E. Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: Synthesis, characterization, and adsorption studies. Chemosphere 2019, 218, 1089–1099. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Yan, Z.; Ao, Y. Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC Adv. 2018, 8, 33523–33533. [Google Scholar] [CrossRef] [Green Version]
- de Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Jafari-Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin. Water Treat. 2016, 57, 18782–18798. [Google Scholar] [CrossRef]
- Huang, C.; Blankenship, D. The removal of mercury (II) from dilute aqueous solution by activated carbon. Water Res. 1984, 18, 37–46. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Derbe, T.; Batu, H.D.W. Cactus potential in heavy metal (Pb and Cd) removal in water sample collected from rural area around Adigrat town. Digestion 2015, 5, 11. [Google Scholar]
- Dhir, B.; Kumar, R. Adsorption of heavy metals by Salvinia biomass and agricultural residues. Int. J. Environ. Res. 2010, 4, 427–432. [Google Scholar] [CrossRef]
- Hossain, M.; Ngo, H.H.; Guo, W.; Nguyen, T. Removal of copper from water by adsorption onto banana peel as bioadsorbent. Int. J. Geomate 2012, 2, 227–234. [Google Scholar] [CrossRef]
- Seniūnaitė, J.; Vaiškunait, R.; Bolutien, V. Coffee grounds as an adsorbent for copper and lead removal form aqueous solutions. In Proceedings of The 9th International Conference “Environmental Engineering”; VGTU Press: Vilnius, Lithuania, 2014. [Google Scholar] [CrossRef]
- Minooeianhaghighi, M.; Sepehrian, L.; Shokri, H. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis. J. Mycol. Med. 2017, 27, 65–71. [Google Scholar] [CrossRef]
- Al-Badani, R.N.; da Silva, J.K.R.; Mansi, I.; Muharam, B.A.; Setzer, W.N.; Awadh Ali, N.A. Chemical composition and biological activity of Lavandula pubescens essential oil from Yemen. J. Essent. Oil Bear. Plants 2017, 20, 509–515. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F. Study on adsorption of Cu and Ba from aqueous solutions using nanoparticles of Origanum (OR) and Lavandula (LV). Bioinorg. Chem. Appl. 2018, 2018, 3936178. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, B.; Lin, P.; Zhou, J.; Zhan, J.; Shen, Q.; Pan, X. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes. Int. J. Phytoremed. 2016, 18, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Gouda, B.; Mousa, O.; Salama, M.; Kassem, H. Volatiles and lipoidal composition: Antimicrobial activity of flowering aerial parts of Lavandula pubescens Decne. Int. J. Pharmacogn. Phytochem. Res. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Akhlaghi, H.; Shafaghat, A.; Salimi, F.; Mohammadhoseini, M. GC-MS analysis of the essential oil from wild Stachys pubescens ten leaves from Northwest Iran. Anal. Chem. Lett. 2011, 1, 325–327. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef] [Green Version]
- Anwar, J.; Shafique, U.; Salman, M.; Dar, A.; Anwar, S. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour. Technol. 2010, 101, 1752–1755. [Google Scholar] [CrossRef]
- Sarı, A.; Tuzen, M. Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J. Hazard. Mater. 2008, 152, 302–308. [Google Scholar] [CrossRef]
- Rearte, T.A.; Bozzano, P.B.; Andrade, M.L.; Fabrizio de Iorio, A. Biosorption of Cr (III) and Pb (II) by Schoenoplectus californicus and Insights into the Binding Mechanism. ISRN Chem. Eng. 2013, 2013, 851602. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater. 2011, 192, 1827–1835. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Wang, X.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation. J. Hazard. Mater. 2010, 183, 583–589. [Google Scholar] [CrossRef]
- Mohammod, M.; Sen, T.K.; Maitra, S.; Dutta, B.K. Removal of Zn 2+ from aqueous solution using castor seed hull. Water Air Soil Pollut. 2011, 215, 609–620. [Google Scholar] [CrossRef]
- FENG, N.-C.; GUO, X.-Y. Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans. Nonferrous Met. Soc. China 2012, 22, 1224–1231. [Google Scholar] [CrossRef]
- Akram, M.; Bhatti, H.N.; Iqbal, M.; Noreen, S.; Sadaf, S. Biocomposite efficiency for Cr (VI) adsorption: Kinetic, equilibrium and thermodynamics studies. J. Environ. Chem. Eng. 2017, 5, 400–411. [Google Scholar] [CrossRef]
- Abu-El-Halawa, R.; Zabin, S.; Abu-Sittah, H. Investigation of methylene blue dye adsorption from polluted water using oleander plant (Al defla) tissues as sorbent. Am. J. Environ. Sci. 2016, 12, 213–224. [Google Scholar] [CrossRef]
- Saha, R.; Mukherjee, K.; Saha, I.; Ghosh, A.; Ghosh, S.K.; Saha, B. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res. Chem. Intermed. 2013, 39, 2245–2257. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; el Makhfouk, M.; Qourzal, S. Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 2013, 1, 144–149. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K.; Ang, H.M. Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study. Process. Saf. Environ. Prot. 2016, 102, 336–352. [Google Scholar] [CrossRef]
- Sen, T.K.; Gomez, D. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 2011, 267, 286–294. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Almutairi, M.S.; Alharthi, F.A.; Aouak, T.; Al-Kahtani, A. Adsorption of Azo Dye Methyl orange from aqueous solutions using alkali-activated polypyrrole-based graphene oxide. Molecules 2019, 24, 3685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calero, M.; Pérez, A.; Blázquez, G.; Ronda, A.; Martín-Lara, M.A. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol. Eng. 2013, 58, 344–354. [Google Scholar] [CrossRef]
- Imran, M.; Anwar, K.; Akram, M.; Shah, G.M.; Ahmad, I.; Samad Shah, N.; Khan, Z.U.H.; Rashid, M.I.; Akhtar, M.N.; Ahmad, S. Biosorption of Pb (II) from contaminated water onto Moringa oleifera biomass: Kinetics and equilibrium studies. Int. J. Phytoremed. 2019, 21, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraja, G.; Krishnaiah, N.; Subbaiah, M.V.; Krishnaiah, A. Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids Surf. B 2014, 114, 75–81. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Rt (min) | Rel. % | Formula | Mol. wt. | Compounds |
---|---|---|---|---|---|
1 | 42.41 | 2.37 | C22H46 | 310 | n-Docosane |
2 | 48.76 | 3.06 | C23H48 | 324 | n-Tricosane |
3 | 51.13 | 6.56 | C27H56 | 380 | n-Heptacosane |
4 | 52.40 | 30.43 | C28H58 | 394 | n-Octacosane |
5 | 54.14 | 2.15 | C29H60 | 408 | n-Nonacosane |
6 | 54.42 | 7.62 | C29H60 | 408 | 2-Methyloctacosane |
7 | 55.13 | 5.63 | C30H62 | 422 | n-Triacontane |
8 | 56.56 | 9.72 | C35H72 | 492 | n-Pentatriacontane |
9 | 57.41 | 27.86 | C36H74 | 506 | n-Hexatriacontane |
10 | 62.7 | 4.60 | C44H90 | 618 | n-Tetratetracontane |
Peak No. | Rt (min) | Rel. % | Chemical Formula | Compounds |
---|---|---|---|---|
1 | 7.74 | 3.85 | C13H28 | Tridecane |
2 | 11.35 | 1.98 | C16H34 | Hexadecane |
3 | 12.74 | 3.07 | C17H36 | Heptadecane |
4 | 14.22 | 8.08 | C18H38 | Octadecane |
5 | 15.65 | 10.01 | C19H40 | Nonadecane |
6 | 16.55 | 8.25 | C20H42 | Eicosane |
7 | 18.33 | 8.26 | C21H44 | Heneicosane |
8 | 19.48 | 23.54 | C22H46 | Docosane |
9 | 21.021 | 5.97 | C23H48 | Tricosane |
10 | 22.319 | 2.55 | C24H50 | Tetracosane |
11 | 22.964 | 4.04 | C25H52 | Pentacosane |
12 | 24.680 | 2.24 | C26H54 | Hexacosane |
13 | 25.258 | 5.92 | C27H56 | Heptacosane |
14 | 26.433 | 2.71 | C28H58 | Octacosane |
15 | 26.965 | 1,84 | C29H60 | Nonacosane |
16 | 27.674 | 1.09 | C30H62 | Triacontane |
17 | 30.369 | 0.96 | C27H46O | Cholesterol |
18 | 31.132 | 3.40 | C29H48O | Stigmasterol |
19 | 32.468 | 1.54 | C29H50O | β-Sitosterol |
20 | 35.062 | 1.05 | C30H50O | α-Amyrine |
Peak No. | Rt (min) | Rel. % | Notation | Compounds |
---|---|---|---|---|
1 | 21.15 | 23.69 | C16(0) | Palmitic acid |
2 | 25.06 | 14.51 | C18(1) | Oleic acid |
3 | 26.03 | 8.99 | C18(2) | Linoleic acid |
4 | 27.04 | 13.72 | C18(3) | Linolenic acid |
5 | 28.65 | 11.24 | C20(0) | Arachidic acid |
6 | 29.48 | 3.30 | C20(4) | Arachidonic acid |
7 | 30.75 | 3.24 | C22(0) | Behenic acid |
8 | 32.45 | 21.31 | C24(0) | Lignoceric acid |
qe. Exp. (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (1/min) | R2 | qe (mg/g) | k2 (g/(mg·min)) | R2 | h (mg/(g·min)) | |
4.12 | 15.10 | 0.063 | 0.946 | 6.91 | 0.0020 | 0.969 | 0.095 |
Adsorbent | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
LPD | qm (mg/g) | KL (L/mg) | R2 | RL (at C0 (mg/g) = 165, 550) | KF | 1/n | n | R2 |
91.32 | 0.0074 | 0.884 | 0.450, 0.024 | 2.722 | 0.662 | 1.511 | 0.989 |
T (K) | lnKs | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol·K) | R2 |
---|---|---|---|---|---|
303 | −2.547 | 6.417 | 38.814 | 106.211 | 0.8871 |
308 | −2.437 | 6.239 | |||
318 | −2.097 | 5.545 | |||
323 | −1.519 | 4.079 |
Biosorbent | qm (mg/g) | Adsorption Conditions | Reference | |||
---|---|---|---|---|---|---|
C0 (mg/L) | pH | T (°C) | Adsorbent Dosage (g/L) | |||
Schoenoplectus californicus | 16.85 | 2.1–414.4 | 5 | 25 ± 1 | 5 | [30] |
Banana peels | 2.18 | 30–80 | 5 | 25 | 40 | [28] |
Ulva lactuca | 34.7 | 10–275 | 5 | 20 | 20 | [29] |
Moringa oleifera leaves | 45.83 | 80 | 6 | Room T. | 1.5 | [43] |
Solanum melongena leaf | 55.55 | 30–90 | 5 | 30 | 0.4 | [44] |
Untreated-Olive tree pruning | 27.05 | 40–2400 | 5 | 25 | 10 | [42] |
H2SO4-Olive tree pruning | 65.62 | |||||
HNO3-Olive tree pruning | 85.09 | |||||
NaOH-Olive tree pruning | 121.60 | |||||
Lavandula pubescens Decne | 91.32 | 10–550 | 6 | 25 | 4 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alorabi, A.Q.; Alharthi, F.A.; Azizi, M.; Al-Zaqri, N.; El-Marghany, A.; Abdelshafeek, K.A. Removal of Lead(II) from Synthetic Wastewater by Lavandula pubescens Decne Biosorbent: Insight into Composition–Adsorption Relationship. Appl. Sci. 2020, 10, 7450. https://doi.org/10.3390/app10217450
Alorabi AQ, Alharthi FA, Azizi M, Al-Zaqri N, El-Marghany A, Abdelshafeek KA. Removal of Lead(II) from Synthetic Wastewater by Lavandula pubescens Decne Biosorbent: Insight into Composition–Adsorption Relationship. Applied Sciences. 2020; 10(21):7450. https://doi.org/10.3390/app10217450
Chicago/Turabian StyleAlorabi, Ali Q., Fahad A. Alharthi, Mohamed Azizi, Nabil Al-Zaqri, Adel El-Marghany, and Khaled A. Abdelshafeek. 2020. "Removal of Lead(II) from Synthetic Wastewater by Lavandula pubescens Decne Biosorbent: Insight into Composition–Adsorption Relationship" Applied Sciences 10, no. 21: 7450. https://doi.org/10.3390/app10217450
APA StyleAlorabi, A. Q., Alharthi, F. A., Azizi, M., Al-Zaqri, N., El-Marghany, A., & Abdelshafeek, K. A. (2020). Removal of Lead(II) from Synthetic Wastewater by Lavandula pubescens Decne Biosorbent: Insight into Composition–Adsorption Relationship. Applied Sciences, 10(21), 7450. https://doi.org/10.3390/app10217450