Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Configuration
2.2. Numerical Method
2.2.1. One-Dimensional Plasma Fluid Model (1D PFM)
2.2.2. Three-Dimensional Gas Flow Model (3D GFM)
2.2.3. Model Coupling
3. Results and Discussion
3.1. Model Validation
3.1.1. Discharge Uniformity
3.1.2. Power Consumption
3.1.3. Reactor Temperature
3.2. Analysis of Atmospheric-Pressure Helium Dielectric-Barrier Discharges (APHeDBDs) Gas Heating
3.2.1. Analysis of Power Consumption
3.2.2. Elastic Collision
3.2.3. Ion Joule Heating
3.2.4. Spatial Distributions of Heating Sources
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nastuta, V.; Popa, G. Surface oxidation and enhanced hydrophilization of polyamide fiber surface after He/Ar atmospheric pressure plasma exposure. Rom. Rep. Phys. 2019, 71, 413. [Google Scholar]
- Cools, P.; Asadian, M.; Nicolaus, W.; Declercq, H.; Morent, R.; de Geyter, N. Surface treatment of PEOT/PBT (55/45) with a dielectric barrier discharge in Air, Helium, Argon and Nitrogen at medium pressure. Materials 2018, 11, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatsu, M.; Sugiyama, K.; Motrescu, I.; Ciolan, M.A.; Ogino, A.; Kawamura, N. Surface modification of fluorine contained resins using an elongated parallel plate electrode type dielectric barrier discharge device. J. Photopolym. Sci. Technol. 2018, 31, 379–383. [Google Scholar] [CrossRef]
- von Woedtke, T.H.; Reuter, S.; Masur, K.; Weltmann, K.D. Plasmas for medicine. Phys. Rep. Rev. Sec. Phys. Lett. 2013, 530, 291–320. [Google Scholar] [CrossRef]
- Setsuhara, Y. Low-temperature atmospheric-pressure plasma sources for plasma medicine. Arch. Biochem. Biophys. 2016, 605, 3–10. [Google Scholar] [CrossRef]
- Li, H.P.; Zhang, X.F.; Zhu, X.M.; Zheng, M.; Liu, S.F.; Qi, X.; Wang, K.P.; Chen, J.; Xi, X.Q.; Tan, J.G.; et al. Translational plasma stomatology: Applications of cold atmospheric plasmas in dentistry and their extension. High Volt. 2017, 2, 188–199. [Google Scholar] [CrossRef]
- Majstorovic, G.L.; Jovovic, J.; Sisovic, N.M. The analysis of nitrogen rotational and vibrational bands in a helium microhollow gas discharge. Contrib. Plasma Phys. 2017, 57, 282–292. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Sadeghi, N.; Schram, D.C.; Lins, V. Gas temperature determination from rotational lines in non-equilibrium plasmas: A review. Plasma Sources Sci. Technol. 2014, 23, 023001. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Doll, F.; Donnelly, V.M.; Economou, D.J.; Sadeghi, N.; Franz, G.F. Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma. J. Phys. D Appl. Phys. 2007, 40, 4202–4211. [Google Scholar] [CrossRef]
- Nersisyan, G.; Graham, W.G. Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. 2004, 13, 582–587. [Google Scholar] [CrossRef]
- Bibinov, N.K.; Fateev, A.A.; Wiesemann, K. On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J. Phys. D-Appl. Phys. 2001, 34, 1819–1826. [Google Scholar]
- Lazarou, C.; Belmonte, T.; Chiper, A.S.; Georghiou, G.E. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge. Plasma Sources Sci. Technol. 2016, 25, 055023. [Google Scholar]
- Lazarou, C.; Koukounis, D.; Chiper, A.S.; Costin, C.; Topala, I.; Georghiou, G.E. Numerical modeling of the effect of the level of nitrogen impurities in a helium parallel plate dielectric barrier discharge. Plasma Sources Sci. Technol. 2015, 24, 035012. [Google Scholar]
- Martens, T.; Bogaerts, A.; Brok, W.J.M.; von Dijk, J. The influence of impurities on the performance of the dielectric barrier discharge. Appl. Phys. Lett. 2010, 96, 091501. [Google Scholar]
- Martens, T.; Bogaerts, A.; Brok, W.J.M.; Dijk, J.V. The dominant role of impurities in the composition of high pressure noble gas plasmas. Appl. Phys. Lett. 2008, 92, 041504. [Google Scholar]
- Mangolini, L.; Anderson, C.; Heberlein, J.; Kortshagen, U. Effects of current limitation through the dielectric in atmospheric pressure glows in Helium. J. Phys. D Appl. Phys. 2004, 37, 1021–1030. [Google Scholar]
- Massines, F.; Rabehi, A.; Decomps, P.; Gadri, R.B.; Segur, P.; Mayoux, C. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys. 1998, 83, 2950–2957. [Google Scholar]
- Radu, I.; Bartnikas, R.; Czeremuszkin, G.; Wertheimer, M.R. Diagnostics of dielectric barrier discharges in noble gases: Atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns. IEEE Trans. Plasma Sci. 2003, 31, 411–421. [Google Scholar]
- Jugroot, M. Neutral gas heating in helium microplasmas. J. Appl. Phys. 2009, 105, 023304. [Google Scholar]
- Kang, W.S.; Kim, H.S.; Hong, S.H. Gas temperature effect on discharge-mode characteristics of atmospheric-pressure dielectric barrier discharge in a helium-oxygen mixture. IEEE Trans. Plasma Sci. 2010, 38, 1982–1990. [Google Scholar]
- Wang, Q.; Yu, X.L.; Wang, D.Z. Numerical study on the gas heating mechanism in pulse-modulated radio-frequency glow discharge. Chin. Phys. B 2017, 26, 035201. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Z.B.; Nie, Q.Y.; Li, H.P.; Bao, C.Y. Influences of gas flowing on the features of a Helium radio-frequency atmospheric-pressure glow discharge. Appl. Therm. Eng. 2014, 72, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Ashpis, E.; Laun, M.C.; Griebeler, E.L. Progress toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators. AIAA Report No.20120823. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9–12 January 2012. [Google Scholar]
- Lin, K.M.; Hung, C.T.; Hwang, F.N.; Smith, M.R.; Yang, Y.W.; Wu, J.S. Development of a parallel semi-implicit two-dimensional plasma fluid modeling code using finite-volume method. Comput. Phys. Commun. 2012, 183, 1225–1236. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722–733. [Google Scholar] [CrossRef]
- Yuan, X.; Raja, L.L. Computational study of capacitively coupled high-pressure glow discharges in helium. IEEE Trans. Plasma Sci. 2003, 31, 495–503. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Martens, T.; Bogaerts, A.; Brok, W.; van Dijk, J. Computer simulations of a dielectric barrier discharge used for analytical spectrometry. Anal. Bioanal. Chem. 2007, 388, 1583–1594. [Google Scholar] [CrossRef]
- Breden, D.; Raja, L.L. Computational study of the interaction of cold atmospheric Helium plasma jets with surfaces. Plasma Sources Sci. Technol. 2014, 23, 065020. [Google Scholar] [CrossRef] [Green Version]
- Tochikubo, F.; Uchida, S.; Yasui, H.; Sato, K. Numerical simulation of NO oxidation in dielectric barrier discharge with microdischarge formation. Jpn. J. Appl. Phys. 2009, 48, 076507. [Google Scholar] [CrossRef]
- Kossyi, I.A.; Kostinsky, A.Y.; Matveyev, A.A.; Silakov, V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992, 1, 207–220. [Google Scholar] [CrossRef]
- CFD-ACE+ User’s Manual 2015; ESI Group: Paris, France, 2015.
- Lin, K.M.; Hu, M.H.; Hung, C.T.; Wu, J.S.; Hwang, F.N.; Chen, Y.S.; Cheng, G. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet. Comput. Phys. Commun. 2012, 183, 2550–2560. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Liu, C. Multipeak behavior and mode transition of a homogeneous barrier discharge in atmospheric pressure helium. Thin Solid Films 2006, 506, 384. [Google Scholar] [CrossRef]
No. | Reaction | Rate Constant (a) | Ref. | ||
---|---|---|---|---|---|
01 | Bolsig+ (d) | 0 | 0 | [29] | |
02 | Bolsig+ | 19.8 | 0 | [29] | |
03 | Bolsig+ | 20.6 | 0 | [29] | |
04 | Bolsig+ | 24.6 | 0 | [29] | |
05 | Bolsig+ | 4.8 | 0 | [29] | |
06 | 0.0 | 0 | [29] | ||
07 | 0.0 | 0 | [29] | ||
08 | 0.0 | −4.8 | [30] | ||
09 | 0.0 | 0 | [29] | ||
10 | 0.0 | 0 | [29] | ||
11 | 0.0 | 0 | [29] | ||
12 | 0.0 | 0 | [29] | ||
13 | 0.0 | 0 | [29] | ||
14 | 0.0 | 0 | [29] | ||
15 | 0.0 | 0 | [29] | ||
16 | 0.0 | 0 | [29] | ||
17 | 0.0 | 0 | [29] | ||
18 | 0.0 | 0 | [29] | ||
19 | 0.0 | 0 | [29] | ||
20 | 0.0 | 0 | [29] | ||
21 | 0.0 | 0 | [29] | ||
22 | Bolsig+ | 0.0 | 0 | [31] | |
23 | Bolsig+ | 6.2 | 0 | [31] | |
24 | Bolsig+ | 7.4 | 0 | [31] | |
25 | Bolsig+ | 11.0 | 0 | [31] | |
26 | Bolsig+ | 8.4 | 0 | [31] | |
27 | Bolsig+ | 15.6 | 0 | [31] | |
28 | 0.0 | 0 | [26] | ||
29 | 0.0 | 0 | [15] | ||
30 | 0.0 | 0 | [15] | ||
31 | 0.0 | 0 | [15] | ||
32 | 0.0 | 0 | [15] | ||
33 | 0.0 | 0 | [15] | ||
34 | 0.0 | 0 | [32] | ||
35 | 0.0 | 0 | [32] | ||
36 | 0.0 | −1.2 | [31] | ||
37 | 0.0 | −5.0 | [30] | ||
38 | 0.0 | −1.3 | [30] | ||
39 | 0.0 | −8.4 | [30] | ||
40 | 0.0 | −4.2 | [26] | ||
41 | 0.0 | 0 | [26] | ||
42 | 0.0 | 0 | [26] | ||
43 | 0.0 | 0 | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-M.; Wang, K.-C.; Chang, Y.-S.; Chuang, S.-Y. Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source. Appl. Sci. 2020, 10, 7583. https://doi.org/10.3390/app10217583
Lin K-M, Wang K-C, Chang Y-S, Chuang S-Y. Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source. Applied Sciences. 2020; 10(21):7583. https://doi.org/10.3390/app10217583
Chicago/Turabian StyleLin, Kun-Mo, Kai-Cheng Wang, Yao-Sheng Chang, and Shun-Yu Chuang. 2020. "Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source" Applied Sciences 10, no. 21: 7583. https://doi.org/10.3390/app10217583
APA StyleLin, K. -M., Wang, K. -C., Chang, Y. -S., & Chuang, S. -Y. (2020). Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source. Applied Sciences, 10(21), 7583. https://doi.org/10.3390/app10217583