Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network
Abstract
:Featured Application
Abstract
1. Introduction
- Obfuscated and unobfuscated malware classification: Obfuscated and unobfuscated malware are classified without using a de-obfuscation process. The consumption of computing resources is reduced, and a basis for the real-time detection of malware is prepared by omitting numerous deobfuscation techniques.
- Global image-based local feature visualization: A local feature visualization method based on a global image is proposed, for the first time, in this paper. The local images of obfuscated malware are created using a GAN based on the global images of obfuscated malware. It is difficult to identify obfuscated malware using text-based malware detection or classification methods. Through this method, the local features of obfuscated malware are simply generated. The generated local image is appropriate for malware classification because each malware family has unique patterns.
- Merged image-based malware classification: A global and local image merge method is proposed, for the first time, that uses global and local images in conjunction. When classifying the malware, small changes are detected using the local images of obfuscated and unobfuscated malware, and the overall structure is identified using the global images of obfuscated and unobfuscated malware.
2. Related Work
2.1. Dynamic and Static Analysis-Based Malware Detection and Classification Methods
2.2. Global Image-Based Malware Detection and Classification Methods
2.3. Local Feature-Based Malware Detection and Classification Methods
3. Global Image-Based Local Feature Visualization, and Global and Local Image Merge Algorithm
3.1. Overview of Proposed Method
3.2. Input and Preprocessing Phases
3.3. Training and Classification Phase
3.3.1. GAN Training and Execution Stage
3.3.2. Global and Local Image Merging Stage
Algorithm 1 Local Feature Visualization Algorithm |
1 FUNCTION ImageMerger (, , ) |
2 OUTPUT |
3 // Merged image |
4 |
5 BEGIN |
6 ←2-Dimension matrix for merged image |
7 FOR Zero to |
8 FOR Zero to |
9 IF pixel from : |
10 ←Extract pixel from global image |
11 ELSE: |
12 ←Extract pixel from local image |
13 END FOR |
14 END FOR |
15 |
16 END |
3.3.3. CNN Training and Classification Stage
4. Experimental Evaluation
4.1. Dataset and Experimental Environments
4.2. Global Image and Local Image Merging Results
4.3. Results of Malware Classification
5. Discussion
5.1. Results of Obfuscated and Unobfuscated Malware Classification
5.2. Comparison between Proposed Method and Previous Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.S.; Lai, Y.K.; Wang, Z.H.; Yan, H.B. A New Learning Approach to Malware Classification using Discriminative Feature Extraction. IEEE Access 2019, 7, 13015–13023. [Google Scholar] [CrossRef]
- Guillén, J.H.; del Rey, A.M.; Casado-Vara, R. Security Countermeasures of a SCIRAS Model for Advanced Malware Propagation. IEEE Access 2019, 7, 135472–135478. [Google Scholar] [CrossRef]
- Nissim, N.; Cohen, A.; Wu, J.; Lanzi, A.; Rokach, L.; Elovici, Y.; Giles, L. Sec-Lib: Protecting Scholarly Digital Libraries From Infected Papers Using Active Machine Learning Framework. IEEE Access 2019, 7, 110050–110073. [Google Scholar] [CrossRef]
- Mahboubi, A.; Camtepe, S.; Morarji, H. A Study on Formal Methods to Generalize Heterogeneous Mobile Malware Propagation and Their Impacts. IEEE Access 2017, 5, 27740–27756. [Google Scholar] [CrossRef]
- Belaoued, M.; Derhab, A.; Mazouzi, S.; Khan, F.A. MACoMal: A Multi-Agent Based Collaborative Mechanism for Anti-Malware Assistance. IEEE Access 2020, 8, 14329–14343. [Google Scholar] [CrossRef]
- Bilar, D. Opcodes as Predictor for Malware. Int. J. Electron. Secur. Digit. Forensics 2007, 1, 156–168. [Google Scholar] [CrossRef]
- Albladi, S.; Weir, G.R. User Characteristics that Influence Judgment of Social Engineering Attacks in Social Networks. Hum. Cent. Comput. Inf. Sci. 2018, 8, 1–24. [Google Scholar] [CrossRef]
- Gandotra, E.; Bansal, D.; Sofat, S. Malware Analysis and Classification: A Survey. J. Inf. Secur. 2014, 5, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode Sequences as Representation of Executables for Data-mining-based Unknown Malware Detection. Inf. Sci. 2013, 231, 64–82. [Google Scholar] [CrossRef]
- Souri, A.; Hosseini, R.A. State-of-the-Art Survey of Malware Detection Approaches using Data Mining Techniques. Hum. Cent. Comput. Inf. Sci. 2018, 8, 1–22. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Venkatraman, S. Robust Intelligent Malware Detection using Deep Learning. IEEE Access 2019, 7, 46717–46738. [Google Scholar] [CrossRef]
- Homayoun, S.; Dehghantanha, A.; Ahmadzadeh, M.; Hashemi, S.; Khayami, R. Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence. IEEE Trans. Emerg. Top. Comput. 2017, 8, 341–351. [Google Scholar] [CrossRef]
- Zhao, B.; Han, J.; Meng, X. A Malware Detection System Based on Intermediate Language. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 824–830. [Google Scholar]
- Tang, M.; Qian, Q. Dynamic API Call Sequence Visualisation for Malware Classification. IET Inf. Secur. 2018, 13, 367–377. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; Sangaiah, A.K. Classification of Ransomware Families with Machine Learning based on N-gram of Opcodes. Future Gener. Comput. Syst. 2019, 90, 211–221. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Kim, I.K. Cyber Genome Technology for Countering Malware. Electron. Telecommun. Trends 2015, 30, 118–128. [Google Scholar] [CrossRef]
- Nataraj, L. Malware Images: Visualization and Automatic Classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security, ACM, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7. [Google Scholar]
- Kancherla, K.; Mukkamala, S. Image Visualization based Malware Detection. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, 16–19 April 2013; pp. 40–44. [Google Scholar]
- Yang, H.; Li, S.; Wu, X.; Lu, H.; Han, W. A Novel Solutions for Malicious Code Detection and Family Clustering Based on Machine Learning. IEEE Access 2019, 7, 148853–148860. [Google Scholar] [CrossRef]
- Fu, J.; Xue, J.; Wang, Y.; Liu, Z.; Shan, C. Malware Visualization for Fine-grained Classification. IEEE Access 2018, 6, 14510–14523. [Google Scholar] [CrossRef]
- Kim, J.Y.; Bu, S.J.; Cho, S.B. Zero-day Malware Detection using Transferred Generative Adversarial Networks based on Deep Autoencoders. Inf. Sci. 2018, 460, 83–102. [Google Scholar] [CrossRef]
- Feng, P.; Ma, J.; Sun, C.; Xu, X.; Ma, Y. A Novel Dynamic Android Malware Detection System with Ensemble Learning. IEEE Access 2018, 6, 30996–31011. [Google Scholar] [CrossRef]
- Xue, D.; Li, J.; Lv, T.; Wu, W.; Wang, J. Malware Classification Using Probability Scoring and Machine Learning. IEEE Access 2019, 7, 91641–91656. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Soman, K.P.; Poornachandran, P.; Sachin Kumar, S. Detecting Android Malware using Long Short-Term Memory (LSTM). J. Intell. Fuzzy Syst. 2018, 34, 1277–1288. [Google Scholar] [CrossRef]
- HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A Deep Recurrent Neural Network based Approach for Internet of Things Malware Threat Hunting. Futur. Gener. Comput. Syst. 2018, 85, 88–96. [Google Scholar] [CrossRef]
- Damodaran, A.; Di, F.T.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A Comparison of Static, Dynamic, and Hybrid Analysis for Malware Detection. J. Comput. Virol. Hacking Tech. 2015, 13, 1–12. [Google Scholar] [CrossRef]
- Gibert, D.; Mateu, C.; Planes, J.; Vicens, R. Using Convolutional Neural Networks for Classification of Malware Represented as Images. J. Comput. Virol. Hacking Tech. 2018, 15, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Qian, Q.; Zhang, R. Malware Identification using Visualization Images and Deep Learning. Comput. Secur. 2018, 77, 871–885. [Google Scholar] [CrossRef]
- Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware Classification with Deep Convolutional Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; pp. 1–5. [Google Scholar]
- Ronen, R.; Radu, M.; Feuerstein, C.; Yom-Tov, E.; Ahmadi, M. Microsoft Malware Classification Challenge. arXiv 2018, arXiv:1802.10135. [Google Scholar]
Family Index | Family Name | Obfuscated Malware | Unobfuscated Malware | Total Number |
---|---|---|---|---|
1 | Ramnit | 28 | 1513 | 1541 |
2 | Lollipop | 8 | 2470 | 2478 |
3 | Kelihos_ver3 | 6 | 2936 | 2942 |
4 | Vundo | 28 | 447 | 475 |
5 | Simda | 8 | 34 | 42 |
6 | Tracur | 457 | 294 | 751 |
7 | Kelihos_ver1 | 11 | 387 | 398 |
8 | Obfuscator.ACY | 58 | 1170 | 1228 |
9 | Gatak | 1 | 1012 | 1013 |
GAN | CNN | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Batchsize | 64 | Batchsize | 32 |
Imageshape | (32,32,1) | Imageshape | (256,256) |
Learningrate | 0.0002 | Learningrate | 0.0001 |
Epoch | 10 | Epoch | 50 |
Filter_size | 5 × 5 | Filter_size | 3 × 3 |
G_h0 | 4 × 4 × 128 | conv1 | 128 × 128 × 32 |
G_h1 | 8 × 8 × 64 | conv2 | 64 × 64 × 32 |
G_h2 | 16 × 16 × 32 | conv3 | 32 × 32 × 64 |
G_h3 | 32 × 32 × 1 | Fc1 | 128 |
D_h0 | 16 × 16 × 1 | Fc2 | 9 |
D_h1 | 8 × 8 × 64 | ||
D_h2 | 4 × 4 × 128 | ||
D_h3 | 64 × 1 |
Accuracy (%) | TFIDF (Top) | Used Image | |
---|---|---|---|
Proposed | 99.39 | 45 | Merge Image |
Proposed | 99.47 | 50 | Merge Image |
Proposed | 99.65 | 55 | Merge Image |
Proposed | 99.56 | 60 | Merge Image |
Proposed | 99.39 | 65 | Merge Image |
Jianwen Fu et al. [20] | 97.47 | Global Image, Local Feature | |
Ni et al. [22] | 99.26 | Local Feature | |
Nataraj [17] | 98.00 | Global Image | |
Kancherla and Mukkamala [18] | 95.95 | Global Image |
True Positive | True Negative | False Positive | False Negative | Precision | Recall | F-1 Score |
---|---|---|---|---|---|---|
13.77 | 113.33 | 0.44 | 0.44 | 0.96 | 0.96 | 0.96 |
Obfuscated Malware (%) | Unobfuscated Malware (%) | |
---|---|---|
Proposed Method | 97 | 100 |
Fu et al. [20] | 99 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Li, S.; Sung, Y. Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network. Appl. Sci. 2020, 10, 7585. https://doi.org/10.3390/app10217585
Jang S, Li S, Sung Y. Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network. Applied Sciences. 2020; 10(21):7585. https://doi.org/10.3390/app10217585
Chicago/Turabian StyleJang, Sejun, Shuyu Li, and Yunsick Sung. 2020. "Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network" Applied Sciences 10, no. 21: 7585. https://doi.org/10.3390/app10217585
APA StyleJang, S., Li, S., & Sung, Y. (2020). Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network. Applied Sciences, 10(21), 7585. https://doi.org/10.3390/app10217585