Smart Heating and Cooling Heat Pump System by Standing Column Well and Cross-Mixing Balancing Well Heat Exchangers
Abstract
:1. Introduction
2. Experimental Methodology
3. Results and Investigations
3.1. Performance Evaluation under Cooling Operation
3.2. Performance Evaluation under Heating Operation
3.3. Results of Performance Evaluation of the Two Types of Geothermal Systems
3.4. Thermal Environment of the Ground-Water Temperature
4. Conclusions
- The average COP values of the balanced well cross-heat exchange system were 3.76 and 3.27 during the cooling and heating operations, respectively. This signifies an improvement of the COP by 23% and 12% during the cooling and heating operations, respectively, compared to that of the existing SCW method of the heat exchange system.
- The initial underground temperature was maintained constant with a small standard deviation of 0.08–0.12 °C for 3–5 d of continuous operation when using the balancing well cross-mixed heat exchange system, enabling a relatively stable supply of heat source.
- A change in operational method from the ordinary SCW-type heat exchange system to the balanced well-intersected heat exchange system improved the COP of the cooling and heating system using geothermal heat and ensured a stable supply of geothermal energy by keeping the initial temperature constant. This could also eliminate the wasting of bleed water.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Measured heat injection (w) | |
Inlet of temperature (°C) | |
Outlet of temperature (°C) | |
Flow rate (LPM) | |
Total cooling capacity of the heat pump (W) | |
Total heating capacity of the heat pump (W) | |
Heat pump inlet temperature (°C) of circulating water on the source side | |
Heat pump outlet temperature (°C) of circulating water on the source side | |
Specific heat of heat source circulation water (J/(kg·K)) | |
Mass flow rate of circulating water on the heat source side (kg/s) | |
Total power consumption (W) |
References
- Lund, J.; Sanner, G.; Rybach, L.; Curtis, R.; Hellström, G. Geothermal (ground-source) heat pumps: A world overview. Geo-Heat Cent. Q. Bull. 2004, 53, 1–10. [Google Scholar]
- Lund, J.W. Geothermal Heat Pumps—An Overview; Geo-Heat Center Quarterly Bulletin, 22/1 (March); Geo-Heat Center, Oregon Institute of Technology: Klamath Falls, OR, USA, 2001; Available online: http://geoheat.oit.edu (accessed on 25 September 2020).
- Lee, C. Thermal performance evaluation of a vertical closed-loop ground heat exchanger according to rock type in Korea. Energy Build. 2019, 183, 184–194. [Google Scholar] [CrossRef]
- Tilley, B.S.; Baumann, T. On temperature attenuation in staged open-loop wells. Renew. Energy 2012, 48, 416–423. [Google Scholar] [CrossRef]
- Woods, K.; Ortega, A. The thermal response of an infinite line of open loop wells for ground coupled heat pump systems. Int. J. Heat Mass Transf. 2011, 54, 5574–5587. [Google Scholar] [CrossRef]
- Lee, C. Thermal performance of a standing column well geothermal heat exchanger system using re-injection of bleeding water. Geothermics 2019, 82, 73–80. [Google Scholar] [CrossRef]
- Beretta, G.P.; Coppola, G.; Della Pona, L. Solute and heat transport in groundwater similarity: Model application of a high capacity open-loop heat pump. Geothermics 2014, 51, 63–70. [Google Scholar] [CrossRef]
- You, J.; Lee, C. Comparative Analysis of Geothermal Energy in Korea Based on Closed Borehole and Single- and Two-Well Standing Column Well Geothermal Heat Exchange Systems. Appl. Sci. 2020, 10, 2467. [Google Scholar] [CrossRef] [Green Version]
- Youngyun, P.; Jong-Koo, M.; Bum-Ju, J.; Yu-Chul, P.; Jin-Yong, L.; Jin-Gu, Y. Change of geothermal properties of groundwater by use of open loop geothermal cooling and heating system. J. Geol. Soc. Korea 2013, 49, 289–296. [Google Scholar]
- Lee, C.; You, J.; Park, H.K. In-situ response test of various borehole depths and heat injection rates at standing column well geothermal heat exchanger systems. Energy Build. 2018, 172, 201–208. [Google Scholar] [CrossRef]
- Hall, A.; Scott, J.A.; Shang, H. Geothermal energy recovery from underground mines. Renew. Sustain. Energy Rev. 2011, 15, 916–924. [Google Scholar] [CrossRef]
- Athresh, A.; Al-Habaibeh, A.; Parker, K. Innovative Approach for Heating of Buildings Using Water from a Flooded Coal Mine Through an Open Loop Based Single Shaft GSHP System. Energy Procedia 2015, 75, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Szulc-Wrońska, A.; Tomaszewska, B. Low Enthalpy Geothermal Resources for Local Sustainable Development: A Case Study in Poland. Energies 2020, 13, 5010. [Google Scholar] [CrossRef]
- Morrone, P.; Algieri, A. Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation. Appl. Sci. 2020, 10, 6639. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus Sentinel-1 MT-InSAR, GNSS and Seismic Monitoring of Deformation Patterns and Trends at the Methana Volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Parisi, M.L.; Douziech, M.; Tosti, L.; Pérez-López, P.; Mendecka, B.; Ulgiati, S.; Fiaschi, D.; Manfrida, G.; Blanc, I. Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability. Energies 2020, 13, 3534. [Google Scholar] [CrossRef]
- Matuszewska, D.; Kuta, M.; Olczak, P. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 2020, 13, 3404. [Google Scholar] [CrossRef]
- Čeryová, D.; Bullová, T.; Turčeková, N.; Adamickova, I.; Moravčíková, D.; Bielik, P. Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries. Resources 2020, 9, 102. [Google Scholar] [CrossRef]
- Agemar, T.; Weber, J.; Moeck, I.S. Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook. Energies 2018, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, A.; Guelpa, E.; Verda, V. Multi-scale modeling of the environmental impact and energy performance of open-loop groundwater heat pumps in urban areas. Appl. Therm. Eng. 2014, 71, 780–789. [Google Scholar] [CrossRef]
- Park, Y.Y.; Mok, J.K.; Jang, B.J.; Park, Y.C.; Lee, J.Y. Influence of open and closed loop geothermal cooling and heating systems on hydrogeological properties. J. Geol. Soc. Korea 2013, 49, 649–659. [Google Scholar]
- Russo, S.L.; Civita, M.V. Open-loop groundwater heat pumps development for large buildings: A case study. Geothermics 2009, 38, 335–345. [Google Scholar] [CrossRef]
- Kim, W.; Lee, S.; Jeon, J.; Kim, M.; Kim, M.; Jeon, Y. Improved Design Method of Open Loop Geothermal System and its Applications. New Renew. Energy 2016, 12, 122–130. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Kim, H.-W.; Nam, Y. Hydraulic feasibility study on the open-loop geothermal system using a pairing technology. KIEAE J. 2017, 17, 119–124. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Kim, H.-W.; Nam, Y. Study on the Underground Thermal Environment around Wells for a Design Method of Open-Loop Geothermal System. Trans. Korea Soc. Geotherm. Energy Eng. 2017, 13, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Choi, C.H.; Jeon, J.U. A study on the KS (Korea Standard) of SCW type ground heat exchanger - ground source heat pump system. Korea Acad. Ind. Coop. Soc. 2013, 3, 22–30. [Google Scholar]
- Chang, K.-S.; Kim, M.J.; Kim, Y.-J. An Experimental Study on the Thermal Performance Evaluation of SCW Ground Heat Exchanger. Int. J. Air-Cond. Refrig. 2017, 25, 1750006. [Google Scholar] [CrossRef]
- Ministry of Trade, Industry and Energy. Standards of Support, Installation and Management for New and Renewable Energy System; Announcement 2015-2632015; Ministry of Trade, Industry and Energy: Sejong, Korea, 2015.
- Sanner, B.; Hellström, G.; Spitler, J.; Gehlin, S. More than 15 years of Mobile Thermal Response Test—A Summary of Experiences and Prospects. In Proceedings of the European Geothermal Congress, Pisa, Italy, 3–7 June 2013. [Google Scholar]
- Beier, R.A.; Smith, M.D.; Spitler, J.D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics 2011, 40, 79–85. [Google Scholar] [CrossRef]
- Chang, K.-S.; Kim, M.J. A Study on the Heat Transfer Characteristics of Various Construction of SCW Type Ground Heat Exchanger. Korean J. Air-Cond. Refrig. Eng. 2014, 26, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, A.-M.; Westerlund, L. Multi-injection rate thermal response test in groundwater filled borehole heat exchanger. Renew. Energy 2010, 35, 1061–1070. [Google Scholar] [CrossRef]
- Raymond, J.; Therrien, R.; Gosselin, L. Borehole temperature evolution during thermal response tests. Geothermics 2011, 40, 69–78. [Google Scholar] [CrossRef]
- Jang, C.-H.; Kim, M.J. Analysis and thermal response test for vertical ground heat exchanger with two U-loop configuration. Int. J. Energy Res. 2015, 40, 189–197. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Chang, J.H.; Park, D.H.; Park, S.S.; Na, S.M. Evaluation of Application of Effective Hydraulic Conductivity in SCW Ground Heat Pump System. In Proceedings of the Korean Geo-Environmental Society, Fall Conference, Seoul, Korea, 2010; pp. 141–146. [Google Scholar]
Location | Transducer Reading (W) | Average q (W) | Difference (W) | % of Average Power |
---|---|---|---|---|
A | 2506.6 | 2657.8 | 101.2 | 3.88 |
B | 3207.2 | 3302.5 | 93.3 | 2.82 |
Actual Flow (LPM) | Calibration Flow (LPM) | Error (%) |
---|---|---|
3.316 | 3.292 | 0.73 |
15.87 | 16.032 | 1.01 |
100.90 | 102.99 | 2.03 |
350.62 | 355.41 | 1.35 |
Initial Ground Water TEMP. | Temperature of Geothermal Side | Temperature of Load Side | Total Power | Consumption. Power | COP | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inlet | Outlet | Flow Rate | Inlet | Outlet | Flow Rate | |||||
NO/Units | °C | °C | °C | LPM | °C | °C | LPM | kW | kW | (-) |
1 | 17.72 | 28.37 | 35.08 | 305.69 | 15.60 | 10.63 | 346.39 | 120.11 | 38.35 | 3.13 |
2 | 19.94 | 29.90 | 36.62 | 304.75 | 15.60 | 11.10 | 346.68 | 119.10 | 39.03 | 3.05 |
3 | 19.98 | 30.45 | 37.14 | 306.05 | 16.28 | 11.35 | 346.58 | 119.06 | 39.29 | 3.03 |
4 | 20.09 | 30.61 | 37.31 | 306.03 | 16.34 | 11.43 | 347.47 | 119.22 | 39.52 | 3.02 |
5 | 20.54 | 31.01 | 37.71 | 304.36 | 16.46 | 11.53 | 348.26 | 119.83 | 39.74 | 3.02 |
Average | 19.65 | 30.07 | 36.77 | 305.38 | 16.06 | 11.21 | 347.08 | 119.46 | 39.19 | 3.05 |
Initial Ground Water Temp. | Temperature of Geothermal Side | Temperature of Load Side | Total Power | Consumption Power | COP | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inlet | Outlet | Flow Rate | Inlet | Outlet | Flow Rate | |||||
NO/Units | °C | °C | °C | LPM | °C | °C | LPM | kW | kW | (-) |
1 | 17.75 | 20.61 | 27.56 | 317.81 | 17.61 | 12.14 | 349.69 | 133.55 | 35.26 | 3.79 |
2 | 17.63 | 20.44 | 27.33 | 318.14 | 17.22 | 11.79 | 349.47 | 132.58 | 35.13 | 3.77 |
3 | 17.91 | 20.44 | 27.21 | 318.76 | 16.49 | 11.13 | 349.14 | 130.54 | 35.00 | 3.73 |
4 | 17.64 | 20.46 | 27.32 | 318.73 | 17.05 | 11.63 | 349.64 | 132.37 | 35.18 | 3.76 |
5 | 17.84 | 20.48 | 27.33 | 318.90 | 16.99 | 11.58 | 349.63 | 132.06 | 35.19 | 3.75 |
Average | 17.75 | 20.49 | 27.35 | 318.47 | 17.07 | 11.65 | 349.51 | 132.22 | 35.15 | 3.76 |
Initial Ground Water Temp. | Temperature of Geothermal Side | Temperature of Load Side | Total Power | Consumption Power | COP | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inlet | Outlet | Flow Rate | Inlet | Outlet | Flow Rate | |||||
NO/Units | °C | °C | °C | LPM | °C | °C | LPM | kW | kW | (-) |
1 | 16.99 | 12.30 | 7.77 | 324.62 | 41.64 | 47.03 | 349.12 | 131.26 | 44.89 | 2.92 |
2 | 16.15 | 12.40 | 7.87 | 324.31 | 41.85 | 47.25 | 349.12 | 131.65 | 45.01 | 2.92 |
3 | 15.84 | 12.12 | 7.62 | 324.55 | 41.99 | 47.37 | 349.29 | 131.01 | 45.01 | 2.92 |
Average | 16.94 | 12.27 | 7.75 | 324.49 | 41.83 | 47.22 | 349.20 | 131.31 | 45.00 | 2.92 |
Initial Ground Water Temp. | Temperature of Geothermal Side | Temperature of Load Side | Total Power | Consumption Power | COP | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inlet | Outlet | Flow Rate | Inlet | Outlet | Flow Rate | |||||
NO/Units | °C | °C | °C | LPM | °C | °C | LPM | kW | kW | (-) |
1 | 16.98 | 14.28 | 9.36 | 319.20 | 40.53 | 46.19 | 348.31 | 137.48 | 41.91 | 3.28 |
2 | 16.85 | 14.26 | 9.33 | 318.75 | 40.47 | 46.14 | 348.60 | 137.95 | 41.91 | 3.27 |
3 | 16.85 | 14.29 | 9.36 | 319.32 | 40.36 | 46.03 | 348.32 | 137.80 | 41.91 | 3.27 |
Average | 16.89 | 14.28 | 9.35 | 319.09 | 40.45 | 46.12 | 348.41 | 137.74 | 42.06 | 3.27 |
Initial Ground-Water Temperature | Cooling Operation | Heating Operation | ||
---|---|---|---|---|
SCW | BW SCW | SCW | BW SCW | |
1 | 17.72 | 17.75 | 16.99 | 16.98 |
2 | 19.94 | 17.63 | 16.15 | 16.85 |
3 | 19.98 | 17.91 | 15.84 | 16.85 |
4 | 20.09 | 17.63 | ||
5 | 20.54 | 17.84 | ||
Standard deviation | 1.11 | 0.12 | 0.6 | 0.08 |
COP Performance Coefficient | Cooling Operation | Heating Operation | ||||
---|---|---|---|---|---|---|
SCW | BW SCW | Remarks | SCW | BW SCW | Remarks | |
Minimum | 2.58 | 3.45 | 2.08 | 2.21 | ||
Maximum | 3.96 | 4.29 | 3.44 | 3.66 | ||
Average | 3.05 | 3.76 | 23% ↑ | 2.92 | 3.27 | 12% ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lim, M.; Yu, B.; Lee, C. Smart Heating and Cooling Heat Pump System by Standing Column Well and Cross-Mixing Balancing Well Heat Exchangers. Appl. Sci. 2020, 10, 7643. https://doi.org/10.3390/app10217643
Kim D, Lim M, Yu B, Lee C. Smart Heating and Cooling Heat Pump System by Standing Column Well and Cross-Mixing Balancing Well Heat Exchangers. Applied Sciences. 2020; 10(21):7643. https://doi.org/10.3390/app10217643
Chicago/Turabian StyleKim, Donggyu, Myungkwan Lim, Byeongseok Yu, and Changhee Lee. 2020. "Smart Heating and Cooling Heat Pump System by Standing Column Well and Cross-Mixing Balancing Well Heat Exchangers" Applied Sciences 10, no. 21: 7643. https://doi.org/10.3390/app10217643
APA StyleKim, D., Lim, M., Yu, B., & Lee, C. (2020). Smart Heating and Cooling Heat Pump System by Standing Column Well and Cross-Mixing Balancing Well Heat Exchangers. Applied Sciences, 10(21), 7643. https://doi.org/10.3390/app10217643