Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy)
Abstract
:1. Introduction
2. Multi-Parametric Monitoring of the Acuto Test-Site
3. Approaches Compared for Multi-Parametric Data Analysis
3.1. Observation-Based Approach
3.2. Statistics-Based Approach
3.3. Semi-Empirical Approach
4. Results
4.1. OBA Analysis
4.2. SBA Analysis
4.3. SEA Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, S.; Mugnozza, G.S.; Strom, A. Landslides from Massive Rock Slope Failure; Nato Science Series; Series IV: Earth Environ Sci; Springer: Dordrecht, The Netherlands, 2006; Volume 49, p. 662. [Google Scholar]
- Bottelin, P.; Jongmans, D.; Daudon, D.; Mathy, A.; Helmstetter, A.; Bonilla-Sierra, V.; Cadet, H.; Amitrano, D.; Richefeu, V.; Lorier, L.; et al. Seismic and mechanical studies of the artificially triggered rockfall at Mount Néron (French Alps, December 2011). Nat. Hazards Earth Syst. Sci. 2014, 14, 3175–3193. [Google Scholar] [CrossRef] [Green Version]
- Lévy, C.; Baillet, L.; Jongmans, D.; Mourot, P.; Hantz, D. Dynamic response of the Chamousset rock column (Western Alps, France). J. Geophys. Res. 2010, 115, F04043. [Google Scholar] [CrossRef]
- Lévy, C.; Jongmans, D.; Baillet, L. Analysis of seismic signals recorded on a prone-to-fall rock column (Vercors massif, French Alps). Geophys. J. Int. 2011, 186, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Mercerat, E.D.; Driad-Lebeau, L.; Bernard, P. Induced Seismicity Monitoring of an Underground Salt Cavern Prone to Collapse. Pure Appl. Geophys. 2010, 167, 5–25. [Google Scholar] [CrossRef]
- Senfaute, G.; Duperret, A.; Lawrence, J.A. Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: A case study at Mesnil-Val, Normandie, NW France. Nat. Hazards Earth Syst. Sci. 2009, 9, 1625–1641. [Google Scholar] [CrossRef]
- Walter, M.; Schwaderer, U.; Joswig, M. Seismic monitoring of precursory fracture signals from a destructive rockfall in the Vorarlberg Alps, Austria. Nat. Hazards Earth Syst. Sci. 2012, 12, 3545–3555. [Google Scholar] [CrossRef] [Green Version]
- Bigarré, P.; Verdel, T.; Klein, E.; Gueniffey, Y. Cloud monitoring: An innovative approach for the prevention of landslide risks. In Proceedings of the Second World Landslide Forum, Rome, Italy, 3–7 October 2011; pp. 1–5. [Google Scholar]
- Fantini, A.; Magrini, M.; Martino, S.; Moroni, D.; Pieri, G.; Prestininzi, A.; Salvetti, O. Experiencing embedded sensors network for the early warning management of natural risks due to fast-failures along railways. In Proceedings of the 5th International Workshop on Image Mining. Theory and Applications, Berlin, Germany, 11–14 March 2015; pp. 85–91. [Google Scholar]
- Rosi, A.; Berti, M.; Bicocchi, N.; Castelli, G.; Corsini, A.; Mamei, M.; Zambonelli, F. Landslide monitoring with sensor networks: Experiences and lessons learnt from a real-world deployment. Int. J. Sens. Netw. 2011, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.; Nadim, C.; Bigarré, P.; Dünner, C. Global monitoring strategy applied to ground failure hazards. In Proceedings of the 10th International Symposium on Landslides and Engineered, Xi’an, China, 30 June–4 July 2008; pp. 1925–1931. [Google Scholar]
- Gunzburger, Y.; Merrien-Soukatchoff, V.; Guglielmi, Y. Influence of daily surface temperature fluctuations on rock slope stability: Case study of the Rochers de Valabres slope (France). Int. J. Rock Mech. Min. Sci. 2005, 42, 331–349. [Google Scholar] [CrossRef]
- Kilburn, C.R.J.; Petley, D.N. Forecasting giant, catastrophic slope collapse: Lessons from Vajont, Northern Italy. Geomorphology 2003, 54, 21–32. [Google Scholar] [CrossRef]
- KhaloKakaie, R.; Zare Naghadehi, M. The assessment of rock slope instability along the Khosh-Yeylagh Main Road (Iran) using a systems approach. Environ. Earth Sci. 2012, 67, 665–682. [Google Scholar] [CrossRef]
- Rozos, D.; Pyrgiotis, L.; Skias, S.; Tsagaratos, P. An implementation of rock engineering system for ranking the instability potential of natural slopes in Greek territory. An application in Karditsa County. Landslides 2008, 5, 261–270. [Google Scholar] [CrossRef]
- Amitrano, D.; Grasso, J.R.; Senfaute, G. Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophys. Res. Lett. 2005, 32, L08314. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, D.; Arattano, M.; Chiarle, M.; Mortara, G.; Occhiena, C.; Pirulli, M.; Scavia, C. Microseismic activity analysis for the study of the rupture mechanisms in unstable rock masses. Nat. Hazards Earth Syst. Sci. 2010, 10, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Arosio, D.; Longoni, L.; Papini, M.; Boccolari, M.; Zanzi, L. Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps. Geophys. J. Int. 2018, 213, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Gaffet, S.; Guglielmi, Y.; Cappa, F.; Pambrun, C.; Monfret, T.; Amitrano, D. Use of the simultaneous seismic, GPS and meteorological monitoring for the characterization of a large unstable mountain slope in the southern French Alps. Geophys. J. Int. 2010, 182, 1395–1410. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.W.; Tang, C.A.; Li, L.C.; Zhou, Z.; Sha, C.; Liang, Z.Z.; Jang, J.Y. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China. Int. J. Rock Mech. Min. Sci. 2011, 48, 950–963. [Google Scholar] [CrossRef]
- Xu, N.W.; Li, T.B.; Dai, F.; Li, B.; Zhu, Y.G.; Yang, D.S. Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China. Eng. Geol. 2015, 188, 48–67. [Google Scholar] [CrossRef]
- Antonello, G.; Casagli, N.; Farina, P.; Leva, D.; Nico, G.; Sieber, A.J.; Tarchi, D. Ground-based SAR interferometry for monitoring mass movements. Landslides 2004, 1, 21–28. [Google Scholar] [CrossRef]
- Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol. 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Fantini, A.; Fiorucci, M.; Martino, S. Rock Falls Impacting Railway Tracks: Detection Analysis through an Artificial Intelligence Camera Prototype. Wirel. Commun. Mob. Com. 2017, 9386928. [Google Scholar] [CrossRef] [Green Version]
- Martino, S.; Mazzanti, P. Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Arosio, D.; Longoni, L.; Papini, M.; Scaioni, M.; Zanzi, L.; Alba, M. Towards rockfall forecasting through observing deformations and listening to microseismic emissions. Nat. Hazards Earth Syst. Sci. 2009, 9, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Gigli, G.; Fanti, R.; Canuti, P.; Casagli, N. Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: The case of Mt. Beni (Florence, Italy). Eng. Geol. 2011, 120, 48–59. [Google Scholar] [CrossRef]
- Janeras, M.; Jara, J.A.; Lopez, F.; Marturia, J.; Royan, M.J.; Vilaplana, J.M.; Aguasca, A.; Fabregas, X.; Cabranes, F.; Gili, J.A. Using several monitoring techniques to measure the rock mass deformation in the Montserrat Massif. IOP Conf. Ser. Earth Environ. Sci. 2015, 26, 01230. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Kaiser, P.K.; Martin, C.D. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int. J. Rock Mech. Min. Sci. 2001, 38, 1135–1145. [Google Scholar] [CrossRef]
- Lai, X.P.; Cai, M.F.; Xie, M.W. In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong Gold Mine, China. Int. J. Rock Mech. Min. Sci. 2006, 43, 640–646. [Google Scholar] [CrossRef]
- Contrucci, I.; Klein, E.; Bigarré, P.; Lizeur, A.; Lomax, A.; Bennani, M. Management of post-mining large-scale ground failures: Blast swarms field experiment for calibration of permanent microseismic early-warning systems. Pure Appl. Geophys. 2010, 167, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Contrucci, I.; Klein, E.; Cao, N.-T.; Daupley, X.; Bigarré, P. Multi-parameter monitoring of a solution mining cavern collapse: First insight of precursors. Comptes Rendus Geosci. 2011, 343, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hall, K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 1999, 31, 47–63. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J. Geophys. Res. Earth Surf. 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J. Geophys. Res. Earth Surf. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Grøneng, G.; Christiansen, H.H.; Nilsen, B.; Blikra, L.H. Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 2011, 8, 1–15. [Google Scholar] [CrossRef]
- Gunzburger, Y.; Merrien-Soukatchoff, V. Near-surface temperatures and heat balance of bare outcrops exposed to solar radiation. Earth Surf. Process. Landf. 2011, 36, 1577–1589. [Google Scholar] [CrossRef]
- Pasten, C.; García, M.; Cortes, D.D. Physical and numerical modelling of the thermally induced wedging mechanism. Geotech. Lett. 2015, 5, 186–190. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat. Geosci. 2016, 2686. [Google Scholar] [CrossRef]
- Bakun-Mazor, D.; Hatzor, Y.H.; Glaser, S.D. Carlos Santamarina, J. Thermally vs. seismically induced block displacements in Masada rock slopes. Int. J. Rock Mech. Min. Sci. 2013, 61, 196–211. [Google Scholar] [CrossRef]
- Hatzor, Y.H. Keyblock Stability in Seismically Active Rock Slopes—Snake Path Cliff, Masada. J. Geotech. Geoenviron. Eng. 2003, 129, 697–710. [Google Scholar] [CrossRef]
- Taboada, A.; Ginouvez, H.; Renouf, M.; Azemard, P. Landsliding generated by thermomechanical interactions between rock columns and wedging blocks: Study case from the Larzac Plateau (Southern France). EPJ Web Conf. 2017, 140, 14012. [Google Scholar] [CrossRef]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Mazzanti, P. Thermal Response of Jointed Rock Masses Inferred from Infrared Thermographic Surveying (Acuto Test-Site, Italy). Sensors 2018, 18, 2221. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Mineo, S.; Perriello Zampelli, S.; Cubito, A.; Calcaterra, D. InfreRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Greif, V.; Brcek, M.; Vlcko, J.; Varilova, Z.; Zvelebil, J. Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic). Landslides 2017, 14, 1441–1455. [Google Scholar] [CrossRef]
- Marmoni, G.M.; Fiorucci, M.; Grechi, G.; Martino, S. Modelling of thermo-mechanical effects in a rock quarry wall induced by near-surface temperature fluctuations. Int. J. Rock Mech. Min. Sci. 2020, 134, 104440. [Google Scholar] [CrossRef]
- Vlcko, J.; Brcek, M.; Greif, V. Deformations Dynamics in Response to Seasonal Temperature Oscillations: An Example from Pravcicka Brana Rock Arch (Czech Republic). Landslide Sci. Safer Geoenviron. 2014, 3, 363–368. [Google Scholar]
- Frattini, P.; Crosta, G.B.; Carrara, A.; Agliardi, F. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 2008, 94, 419–437. [Google Scholar] [CrossRef]
- Cervi, F.; Berti, M.; Borgatti, L.; Ronchetti, F.; Manenti, F.; Corsini, A. Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: A case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 2010, 7, 433–444. [Google Scholar] [CrossRef]
- Pergalani, F.; Pagliaroli, A.; Bourdeau, C.; Compagnoni, M.; Lenti, L.; Lualdi, M.; Madiai, C.; Martino, S.; Razzano, R.; Varone, C.; et al. Seismic microzoning map: Approaches, results and applications after the 2016–2017 Central Italy seismic sequence. Bull. Earthq. Eng. 2020, 18, 5595–5629. [Google Scholar] [CrossRef] [Green Version]
- Curtis, Z.K.; Li, S.G.; Liao, H.S.; Lusch, D. Data-driven approach for analyzing hydrogeology and groundwater quality across multiple scales. Groundwater 2018, 56, 377–398. [Google Scholar] [CrossRef]
- Schilirò, L.; Montrasio, L.; Scarascia Mugnozza, G. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study. Sci. Total Environ. 2016, 569, 134–144. [Google Scholar] [CrossRef]
- Stead, D.; Eberhardt, E.; Coggan, J.S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng. Geol. 2006, 83, 217–235. [Google Scholar] [CrossRef]
- Martino, S.; Battaglia, S.; D’Alessandro, F.; Della Seta, M.; Esposito, C.; Martini, G.; Pallone, F.; Troiani, F. Earthquake-induced landslide scenarios for seismic microzonation: Application to the Accumoli area (Rieti, Italy). Bull. Earthq. Eng. 2020, 18, 5655–5673. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Agliardi, F. Failure forecast for large rock slides by surface displacement measurements. Can. Geotech. J. 2003, 40, 176–191. [Google Scholar] [CrossRef]
- Dick, G.J.; Eberhardt, E.; Cabrejo-Liévano, A.G.; Stead, D.; Rose, N.D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J. 2014, 52, 515–529. [Google Scholar] [CrossRef]
- Mazzanti, P.; Bozzano, F.; Cipriani, I.; Prestininzi, A. New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides 2015, 12, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Helmstetter, A.; Garambois, S. Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. Earth Surf. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Muscillo, S.; Wasowski, J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview. Eng. Geol. 2014, 182, 182–200. [Google Scholar] [CrossRef]
- Liow, L.H.; Reitan, T.; Harnik, P.G. Ecological interactions on macroevolutionary time scales: Clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 2015, 18, 1030–1039. [Google Scholar] [CrossRef]
- Andersson, P.; Wass, E. Aspo Hard Rock Laboratory. Aspo pillar stability experiment. Final Report, Rock mass response to coupled mechanical thermal loading. SKBTR 1999. [Google Scholar]
- Alcaíno-Olivares, R.; Perras, M.A.; Ziegler, M.; Maissen, J. Cliff stability at tomb KV42 in the Valley of the Kings, Egypt: A first approach to numerical modelling and site investigation. In Proceedings of the 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019. [Google Scholar]
- Accordi, G.; Carbone, F.; Civitelli, G.; Corda, L.; De Rita, D.; Esu, D.; Funiciello, R.; Kotsakis, T.; Mariotti, G.; Sposato, A. Lithofacies map of Latium- Abruzzi and neighbouring areas. Quaderno C.N.R. La Ricerca Scientifica 1986, 114, 1–223. [Google Scholar]
- Fantini, A.; Fiorucci, M.; Martino, S.; Paciello, A. Investigating Rock Mass Failure Precursors Using a Multi-Sensor Monitoring System: Preliminary Results from a Test-Site (Acuto, Italy). Procedia Eng. 2017, 191, 188–195. [Google Scholar] [CrossRef]
- Fantini, A.; Fiorucci, M.; Martino, S.; Sarandrea, P. 3D Remote survey of a rock wall hosting a multi-sensor monitoring system in a test-site (Acuto, Italy). Rend. Online Soc. Geol. It. 2017, 42, 30–33. [Google Scholar] [CrossRef]
- ISRM. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. In ISRM & ISRM Turkish National Group; Ulusay, R., Hudson, J.A., Eds.; ISRM Commissions on Testing Methods: Ankara, Turkey, 2007; p. 628. ISBN 978-975-93675-4-1. [Google Scholar]
- Hoek, E.; Bray, J. Rock Slope Engineering; CRC Press: London, UK, 1981. [Google Scholar]
- D’Angiò, D.; Curi, L.; Fiorucci, M.; Iannucci, R.; Lenti, L.; Martino, S.; Paciello, A. Fractured rock mass response to induced vibrations: Preliminary results from two test sites. In Proceedings of the 36° Convegno Nazionale del Gruppo Nazionale di Geofisica della Terra Solida (GNGTS), Trieste, Italy, 14–16 November 2017; pp. 696–700. [Google Scholar]
- D’Angiò, D.; Fiorucci, M.; Lenti, L.; Martino, S.; Paciello, A. Preliminary results of vibration modes induced by forced dynamic shaking in a quarry rock wall. In Proceedings of the Progressive Rock Failure Conference, Monte Verità, Switzerland, 5–9 June 2017. Paper n° 04F-16. [Google Scholar]
- Bozzano, F.; Esposito, C.; Fantini, A.; Fiorucci, M.; Martino, S.; Mazzanti, P.; Prestininzi, P.; Rivellino, S.; Rocca, A.; Scarascia Mugnozza, G. Multisensor Landslide Monitoring as a Challenge for Early Warning: From Process Based to Statistic Based Approaches. In Advancing Culture of Living with Landslides; Mikoš, M., Vilímek, V., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 33–39. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 1 August 2020).
- Szwedzicki, T. Geotechnical precursors to large-scale ground collapse in mines. Int. J. Rock Mech. Min. Sci. 2001, 38, 957–965. [Google Scholar] [CrossRef]
- Szwedzicki, T. Rock mass behaviour prior to failure. Int. J. Rock Mech. Min. Sci. 2003, 40, 573–584. [Google Scholar] [CrossRef]
- Lenti, L.; Martino, S.; Paciello, A.; Prestininzi, A.; Rivellino, S. Microseismicity within a karstified rock mass due to cracks and collapses as a tool for risk management. Nat. Hazards 2012, 64, 359–379. [Google Scholar] [CrossRef] [Green Version]
- Fukuzono, T. A new method for predicting the failure time of a slope. In Proceedings of the 4th International Conference and Field Workshop on Landslides, Tokyo, Japan, 23–31 August 1985; pp. 145–150. [Google Scholar]
- Cornelius, R.R.; Voight, B. Graphical and PC-software analysis of volcano eruption precursors according to the Materials Failure Forecast Method (FFM). J. Volcanol. Geotherm. Res. 1995, 64, 295–320. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Esposito, C.; Mazzanti, P.; Rocca, A. Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR Interferometry. Geosciences 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Segalini, A.; Valletta, A.; Carri, A. Landslide time-of-failure forecast and alert threshold assessment: A generalized criterion. Eng. Geol. 2018, 245, 72–80. [Google Scholar] [CrossRef]
- Cherkassky, V.; Krasnopolsky, V.; Solomatine, D.P.; Valdes, J. Computational intelligence in earth sciences and environmental applications: Issues and challenges. Neural Netw. 2006, 19, 113–121. [Google Scholar] [CrossRef]
- Toms, B.A.; Barnes, E.A.; Ebert-Uphoff, I. Physically interpretable neural networks for the geosciences: Applications to earth system variability. J. Adv. Model. 2020, 12, e2019MS002002. [Google Scholar]
- Fiorucci, M.; Marmoni, G.M.; Martino, S.; Paciello, A. Experimental evidences of thermo-mechanical induced effects on jointed rock masses through infrared thermography and stress-strain monitoring. In Geomechanics and Geodynamics of Rock Masses; Litvinenko, V., Ed.; Taylor & Francis Group: London, UK, 2018; Volume 1, pp. 263–268. [Google Scholar]
- Attewell, P.B.; Farmer, I.W. Fatigue behaviour of rock. Int. J. Rock Mech. Min. Sci. 1973, 10, 1–9. [Google Scholar] [CrossRef]
- Cerfontaine, B.; Collin, F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock. Mech. Rock. Eng. 2018, 51, 391–414. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 1970, 60, 29–61. [Google Scholar]
Set | Dip Dir. (°) | Dip (°) | JCS (MPa) | JRC | ϕ (°) |
---|---|---|---|---|---|
0 | 93 | 4 | 180 | 3 | 53 |
1 | 131 | 82 | 120 | 8 | 54 |
2 | 91 | 64 | 130 | 3 | 49 |
3 | 4 | 80 | 110 | 4 | 49 |
4 | 198 | 86 | 140 | 5 | 50 |
Device | Measuring Range | Precision | Repeatability | Resolution | Linearity | Natural Frequency |
---|---|---|---|---|---|---|
Air Thermometer | −40/+60 °C | ±0.1 K | ±0.1 °C | - | - | - |
Hygrometer | 0–100% RH | ±0.8% RH | >5% RH | - | - | - |
Wind Speed | 1.5/79 m/s | ±1.5 m/s | - | 0.1 m/s | - | - |
Wind Direction | 0–352° | ±7° | - | - | - | - |
Rain Gage (standard WMO) | - | ±0.2 mm | - | 0.2 mm H2O | - | - |
Rock Thermometer | −30/+100 °C | - | - | 0.1 °C | ±0.15 °C | - |
Strain Gage (1-LY41-50/120) | 50 mm (measurement base) | - | - | 1 μstrain | - | - |
Extensometer | 25 mm (measurement base) | - | - | 0.01 mm | 0.5% | - |
Accelerometer (KINEMETRICS FBA11) | ±1 g | - | - | - | - | 50 Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorucci, M.; Martino, S.; Bozzano, F.; Prestininzi, A. Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy). Appl. Sci. 2020, 10, 7658. https://doi.org/10.3390/app10217658
Fiorucci M, Martino S, Bozzano F, Prestininzi A. Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy). Applied Sciences. 2020; 10(21):7658. https://doi.org/10.3390/app10217658
Chicago/Turabian StyleFiorucci, Matteo, Salvatore Martino, Francesca Bozzano, and Alberto Prestininzi. 2020. "Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy)" Applied Sciences 10, no. 21: 7658. https://doi.org/10.3390/app10217658
APA StyleFiorucci, M., Martino, S., Bozzano, F., & Prestininzi, A. (2020). Comparison of Approaches for Data Analysis of Multi-Parametric Monitoring Systems: Insights from the Acuto Test-Site (Central Italy). Applied Sciences, 10(21), 7658. https://doi.org/10.3390/app10217658