Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection
Abstract
:1. Introduction
- We propose a maximum marginal approach (MM) on the EEG signal preprocessing for emotion detection. It defines the similarity of two class signals and selects the feature on the frequency domain. The results show that MM performs better than other feature selection methods on emotion detection.
- We conducted experiments on real EEG data by applying the selected features to bi-direction long short-term memory model (BiLSTM). The results show that the MM-based models performed better than the models without signal processing. The MM-based BiLSTM achieved better performance than others.
2. Related Work
3. Maximum Marginal Approach
3.1. Detail Components Set Construction
3.2. Feature Selection
4. BiLSTM Network
5. Experimental Results
5.1. Dataset
5.2. Results and Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsipouras, M.G. Spectral information of EEG signals with respect to epilepsy classification. EURASIP J. Adv. Signal Process. 2019, 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.A.; Shanir, P.; Khan, Y.U.; Farooq, O. A hybrid Local Binary Pattern and wavelets based approach for EEG classification for diagnosing epilepsy. Expert Syst. Appl. 2020, 140, 112895. [Google Scholar] [CrossRef]
- Gupta, V.; Pachori, R.B. Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed. Signal Process. Control 2019, 53, 101569. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network. IEEE Trans. Neural Syst. Rehabil. 2020, 28, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Seeja, K. Subject independent emotion recognition from EEG using VMD and deep learning. J. King Saud Univ. Comput. Inform. Sci. 2019. [Google Scholar] [CrossRef]
- Xing, X.; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG. Front. Neurorobot. 2019, 13, 37. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, L.; Li, R.; He, Z.; Xiao, J.; Liang, Y.; Wang, F.; Pan, J. Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection. Sensors 2020, 20, 3028. [Google Scholar] [CrossRef]
- Jin, L. Emotion Recognition based BCI using Channel-wise Features. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–6. [Google Scholar]
- Huang, H.; Xie, Q.; Pan, J.; He, Y.; Wen, Z.; Yu, R.; Li, Y. An EEG-based brain computer interface for emotion recognition and its application in patients with Disorder of Consciousness. IEEE Trans. Affect. Comput. 2019. [Google Scholar] [CrossRef]
- Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wei, F.; Zhu, Z.; Liu, J.; Wu, X. Eeg Feature Selection Using Orthogonal Regression: Application to Emotion Recognition. In Proceedings of the 45th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual Barcelona, Span, 4–8 May 2020; pp. 1239–1243. [Google Scholar]
- Li, G.; Lee, C.H.; Jung, J.J.; Youn, Y.C.; Camacho, D. Deep learning for EEG data analytics: A survey. Concurrency and Computation: Practice and Experience 2020, 32, e5199. [Google Scholar] [CrossRef]
- Rathi, S.; Kaur, B.; Agrawal, R. Enhanced Depression Detection from Facial Cues Using Univariate Feature Selection Techniques. In International Conference on Pattern Recognition and Machine Intelligence; Springer: Berlin/Heidelberg, Germany; pp. 22–29.
- Nemrodov, D.; Ling, S.; Nudnou, I.; Roberts, T.; Cant, J.S.; Lee, A.C.; Nestor, A. A multivariate investigation of visual word, face, and ensemble processing: Perspectives from EEG-based decoding and feature selection. Psychophysiology 2020, 57, e13511. [Google Scholar] [CrossRef] [PubMed]
- Taran, S.; Bajaj, V. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Comput. Methods Programs Biomed. 2019, 173, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Kundu, T.; Ghosh, D.; Sarkar, R. Feature selection for facial emotion recognition using late hill-climbing based memetic algorithm. Multimed. Tools Appl. 2019, 78, 25753–25779. [Google Scholar] [CrossRef]
- He, H.; Tan, Y.; Ying, J.; Zhang, W. Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm. Appl. Soft Comput. 2020, 94, 106426. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Wang, L.; Zong, Y.; Cui, Z. From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural Network Model for EEG Emotion Recognition. IEEE Trans. Affect. Comput. 2019. [Google Scholar] [CrossRef] [Green Version]
- Anuragi, A.; Sisodia, D.S. Alcohol use disorder detection using EEG Signal features and flexible analytical wavelet transform. Biomed. Signal Process. Control 2019, 52, 384–393. [Google Scholar] [CrossRef]
- Aydemir, E.; Tuncer, T.; Dogan, S. A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method. Med. Hypotheses 2020, 134, 109519. [Google Scholar] [CrossRef]
- Ni, Z.; Yuksel, A.C.; Ni, X.; Mandel, M.I.; Xie, L. Confused or not confused? Disentangling brain activity from eeg data using bidirectional lstm recurrent neural networks. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Boston, MA, USA, 20–23 August 2017; pp. 241–246. [Google Scholar]
- Chao, H.; Dong, L.; Liu, Y.; Lu, B. Emotion recognition from multiband EEG signals using CapsNet. Sensors 2019, 19, 2212. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Jin, B.; Yang, H.; Tong, J.; Liu, C.; Xiong, H. Unsupervised EEG feature extraction based on echo state network. Inf. Sci. 2019, 475, 1–17. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.F.; Hossain, M.; Ahmmed, R. Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egypt. Inf. J. 2020, 21, 23–35. [Google Scholar]
- Alyasseri, Z.A.A.; Khadeer, A.T.; Al-Betar, M.A.; Abasi, A.; Makhadmeh, S.; Ali, N.S. The effects of EEG feature extraction using multi-wavelet decomposition for mental tasks classification. In Proceedings of the International Conference on Information and Communication Technology, Baghdad, Iraq, 1–8 April 2019; pp. 139–146. [Google Scholar]
- Hong, K.S.; Khan, M.J.; Hong, M.J. Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front. Hum. Neurosci. 2018, 12, 246. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Pachori, R.B. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 2017, 64, 2003–2015. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Pachori, R.B. Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform. Biomed. Signal Process. Control 2020, 62, 102124. [Google Scholar] [CrossRef]
- Follis, J.L.; Lai, D. Variability analysis of epileptic EEG using the maximal overlap discrete wavelet transform. Health Inf. Sci. Syst. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Jiao, Y.; Deng, Y.; Luo, Y.; Lu, B.L. Driver Sleepiness Detection from EEG and EOG signals Using GAN and LSTM Networks. Neurocomputing 2020, 408, 100–111. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X.; Wu, H.; Yang, X. EEG-based emotion classification based on Bidirectional Long Short-Term Memory Network. Procedia Comput. Sci. 2020, 174, 491–504. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Cao, Q.; Parry, M.E. Neural network earnings per share forecasting models: A comparison of backward propagation and the genetic algorithm. Decis. Support Syst. 2009, 47, 32–41. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Hu, X.; Yang, Y.; Meng, Z.; Chang, K.m. Using EEG to Improve Massive Open Online Courses Feedback Interaction. In Proceedings of the 16th international conference on artificial intelligence in education, Memphis, TN, USA, 9–13 July 2013. [Google Scholar]
- Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190. [Google Scholar] [CrossRef]
- Yean, C.W.; Wan Ahmad, W.K.; Mustafa, W.A.; Murugappan, M.; Rajamanickam, Y.; Adom, A.H.; Omar, M.I.; Zheng, B.S.; Junoh, A.K.; Razlan, Z.M.; et al. An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals. Brain Sci. 2020, 10, 672. [Google Scholar] [CrossRef]
Models | Accuracy | Precision | Recall | F1-score | ||||
---|---|---|---|---|---|---|---|---|
Oirignal | MM | Oirignal | MM | Oirignal | MM | Oirignal | MM | |
KNN | 0.501 | 0.540 | 0.486 | 0.537 | 0.256 | 0.453 | 0.301 | 0.456 |
CNN | 0.433 | 0.680 | 0.397 | 0.655 | 0.425 | 0.744 | 0.368 | 0.656 |
NN | 0.500 | 0.467 | 0.467 | 0.478 | 0.530 | 0.795 | 0.467 | 0.553 |
LSTM | 0.640 | 0.770 | 0.608 | 0.725 | 0.822 | 0.881 | 0.653 | 0.748 |
BiLSTM | 0.680 | 0.860 | 0.660 | 0.952 | 0.763 | 0.822 | 0.661 | 0.835 |
Methods | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
MM-based | 0.880 | 0.952 | 0.822 | 0.835 |
Wrapper | 0.790 | 0.749 | 0.880 | 0.763 |
Built-in | 0.640 | 0.626 | 0.724 | 0.625 |
Filter | 0.730 | 0.694 | 0.802 | 0.697 |
Fisher score | 0.860 | 0.835 | 0.906 | 0.819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Jung, J.J. Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection. Appl. Sci. 2020, 10, 7677. https://doi.org/10.3390/app10217677
Li G, Jung JJ. Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection. Applied Sciences. 2020; 10(21):7677. https://doi.org/10.3390/app10217677
Chicago/Turabian StyleLi, Gen, and Jason J. Jung. 2020. "Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection" Applied Sciences 10, no. 21: 7677. https://doi.org/10.3390/app10217677
APA StyleLi, G., & Jung, J. J. (2020). Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection. Applied Sciences, 10(21), 7677. https://doi.org/10.3390/app10217677