Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety
Abstract
:1. Introduction
2. Simulations and Theoretical Aspect
2.1. Monte Carlo N-Particle Transport Simulation Code
2.2. Radiation Shielding Parameter Calculation
3. Results and Discussion
4. Conclusions
- The highest MAC was achieved for thee eMAR-302 and MAR-247 alloys and varied between 0.035–72.938 cm2·g−1 and 0.035–71.98 cm2·g−1, respectively, while the lowest MAC was achieved for Inconel-718 and Nimocast-75 and varied in the range of 0.033–59.25 cm2·g−1 and 0.032–59.30 cm2·g−1, respectively.
- The obtained results between the simulated MAC using the eMCNP-5 code and theoretical MAC using the XCOM database were proven to greatly agree with each other.
- The thickest HVL was achieved for the alloy encoded as Inconel-625 and varied between 0.001 and 2.604 cm, while MAR-247 had the thinnest HVL, which varied between 0.001 and 2.159 cm.
- The highest values for the Zeff and Zeq were achieved for the alloys encoded as MAR-302 and MAR-247.
- The lowest fast neutron effective removal cross-section was obtained for MAR-302 (∑R = 0.01841 cm2·g−1), while Inconel-718 (∑R = 0.01945 cm2·g−1) and Nimocost-75 (∑R = 0.01940 cm2·g−1) had the greatest values.
Author Contributions
Funding
Conflicts of Interest
References
- Mahmoud, K.A.; Tashlykov, O.L.; Wakil, A.F.E.; Zakaly, H.M.H.; Aassy, I.E.E. Investigation of radiation shielding properties for some building materials reinforced by basalt powder. In Proceedings of the AIP Conference Proceedings, Yekaterinburg, Russia, 23–25 December 2019. [Google Scholar]
- Mahmoud, K.A.; Sayyed, M.I.; Tashlykov, O.L. Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 2019, 51, 1835–1841. [Google Scholar] [CrossRef]
- Vaiserman, A.; Koliada, A.; Zabuga, O.; Socol, Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose-Response 2018, 16, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, T.A.; Costes, S.V.; Abergel, R.J. Understanding the health impacts and risks of exposure to radiation. In Reflections on the Fukushima Daiichi Nuclear Accident: Toward Social-Scientific Literacy and Engineering Resilience; Springer International Publishing: Cham, Switzerland, 2015; ISBN 9783319120904. [Google Scholar]
- Mahmoud, K.A.; Tashlykov, O.L.; El Wakil, A.F.; El Aassy, I.E. Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Prog. Nucl. Energy 2020, 118, 103092. [Google Scholar] [CrossRef]
- Ouda, A.S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog. Nucl. Energy 2015, 79, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Kaur, U.; Sharma, J.K.; Singh, P.S.; Singh, T. Comparative studies of different concretes on the basis of some photon interaction parameters. Appl. Radiat. Isot. 2012, 70, 233–240. [Google Scholar] [CrossRef]
- Waly, E.S.A.; Bourham, M.A. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 2015, 85, 306–310. [Google Scholar] [CrossRef]
- Yilmaz, E.; Baltas, H.; Kiris, E.; Ustabas, I.; Cevik, U.; El-Khayatt, A.M. Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 2011, 38, 2204–2212. [Google Scholar] [CrossRef]
- Gencel, O.; Bozkurt, A.; Kam, E.; Korkut, T. Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy 2011, 38, 2719–2723. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I. Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 2019, 45, 24858–24864. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I. A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. 2020, 46, 6136–6140. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I.; Mohammed, H.; Rimondini, L. X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 2020, 46, 251–257. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Sayyed, M.I.; Mahmoud, K.A.; Al-Hadeethi, Y. Direct influence of mercury oxide on structural, optical and radiation shielding properties of a new borate glass system. Ceram. Int. 2020, 46, 17978–17986. [Google Scholar] [CrossRef]
- Divina, R.; Marimuthu, K.; Mahmoud, K.A.; Sayyed, M.I. Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes. Ceram. Int. 2020, 46, 17929–17937. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Asher, C.J.; Kopittke, R.A.; Menzies, N.W. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ. Pollut. 2007, 150, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Akman, F.; Sayyed, M.I.; Kaçal, M.R.; Tekin, H.O. Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV–1333 keV. J. Alloys Compd. 2019, 772, 516–524. [Google Scholar] [CrossRef]
- Agar, O.; Sayyed, M.I.; Akman, F.; Tekin, H.O.; Kaçal, M.R. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 2019, 51, 853–859. [Google Scholar] [CrossRef]
- Akman, F.; Kaçal, M.R.; Sayyed, M.I.; Karataş, H.A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315–322. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, A.; Singh, P.S.; Singh, T. Scope of Pb-Sn binary alloys as gamma rays shielding material. Prog. Nucl. Energy 2016, 93, 277–286. [Google Scholar] [CrossRef]
- Singh, J.; Singh, H.; Sharma, J.; Singh, T.; Singh, P.S. Fusible alloys: A potential candidate for gamma rays shield design. Prog. Nucl. Energy 2018, 106, 387–395. [Google Scholar] [CrossRef]
- Singh, T.; Kaur, A.; Sharma, J.; Singh, P.S. Gamma rays’ shielding parameters for some Pb-Cu binary alloys. Eng. Sci. Technol. an Int. J. 2018, 21, 1078–1085. [Google Scholar] [CrossRef]
- Aygün, B.; Şakar, E.; Korkut, T.; Sayyed, M.I.; Karabulut, A.; Zaid, M.H.M. Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Results Phys. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Liu, J.; Pan, F. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Y-Zr alloys. Mater. Des. 2015, 65, 360–369. [Google Scholar] [CrossRef]
- Singh, V.P.; Badiger, N.M. An investigation on gamma and neutron shielding efficiency of lead-free compounds and alloys. Indian J. Pure Appl. Phys. 2016, 54, 443–448. [Google Scholar]
- Mankins, W.L.; Lamb, S. Nickel and Nickel Alloys, in ASM Metals Handbook, VOL.2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Novelty, OH, USA, 1990; ISBN 978-1-62708-162-7. [Google Scholar] [CrossRef]
- X-5 Monte Carlo Team. MCNP—A General Monte Carlo N-Particle Transport Code, Version 5, LA-CP-03-0245; University of California, Los Alamos National Laboratory: Los Alamos, NM, USA, 2003. [Google Scholar]
- Mansour, A.; Sayyed, M.I.; Mahmoud, K.A.; Şakar, E.; Kovaleva, E.G. Modified halloysite minerals for radiation shielding purposes. J. Radiat. Res. Appl. Sci. 2020, 13, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, K.A.; Tashlykov, O.L.; Sayyed, M.I.; Kavaz, E. The role of cadmium oxides in the enhancement of radiation shielding capacities for alkali borate glasses. Ceram. Int. 2020. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818. [Google Scholar] [CrossRef] [Green Version]
- Rammah, Y.S.; Mahmoud, K.A.; Kavaz, E.; Kumar, A.; El-Agawany, F.I. The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. 2020, 46, 23357–23368. [Google Scholar] [CrossRef]
- El-Agawany, F.I.; Tashlykov, O.L.; Mahmoud, K.A.; Rammah, Y.S. The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: Simulation and theoretical study. Ceram. Int. 2020, 46, 23369–23378. [Google Scholar] [CrossRef]
- El-Agawany, F.I.; Mahmoud, K.A.; Kavaz, E.; El-Mallawany, R.; Rammah, Y.S. Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses. Appl. Phys. A Mater. Sci. Process. 2020, 126, 1–11. [Google Scholar] [CrossRef]
- El Abd, A.; Mesbah, G.; Mohammed, N.M.A.; Ellithi, A. A simple Method for Determining the Effective Removal Cross Section for Fast Neutrons. J. Radiat. Nucl. Appl. 2017, 2, 53–58. [Google Scholar] [CrossRef]
Alloy Code. | Fractional Abundance (wt.%) | Density (g·cm−3) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Cr | Co | Mo | W | Ta | Al | Ti | Hf | Zr | B | Ni | Fe | Nb | ||
MAR-247 | 0.02 | 8.50 | 10.00 | 0.65 | 10.00 | 3.00 | 5.60 | 1.00 | 1.40 | 0.04 | 0.02 | 59.63 | 0.00 | 0.00 | 8.53 |
MAR-302 | 0.85 | 21.50 | 56.94 | 0.00 | 10.00 | 9.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.01 | 0.00 | 1.50 | 0.00 | 9.21 |
Inconel-625 | 0.00 | 21.50 | 0.00 | 9.00 | 0.00 | 0.00 | 0.20 | 0.20 | 0.00 | 0.00 | 0.00 | 61.00 | 2.00 | 3.60 | 8.44 |
Inconel-718 | 0.00 | 19.00 | 0.00 | 3.00 | 0.00 | 0.00 | 0.50 | 0.90 | 0.00 | 0.00 | 0.00 | 52.50 | 18.50 | 5.10 | 8.22 |
Nimocast-75 | 0.12 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 79.88 | 0.00 | 0.00 | 8.44 |
WI-52 | 0.85 | 21.50 | 63.65 | 0.00 | 11.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 8.88 |
Energy (MeV) | The Mass Attenuation Coefficient (cm2·g−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAR-274 | MAR-302 | Inconel 625 | Inconel 718 | Nimocast | WI-52 | |||||||||||||
MCNP-5 | XCOM | Diff (%) | MCNP-5 | XCOM | Diff (%) | MCNP-5 | XCOM | Diff (%) | MCNP-5 | XCOM | Diff (%) | MCNP-5 | XCOM | Diff (%) | MCNP-5 | XCOM | Diff (%) | |
0.015 | 71.987 | 73.030 | 1.449 | 72.938 | 72.025 | 1.252 | 65.726 | 65.708 | 0.027 | 59.259 | 59.004 | 0.431 | 59.309 | 57.783 | 2.573 | 66.368 | 66.245 | 0.185 |
0.03 | 10.873 | 11.140 | 2.458 | 11.142 | 10.863 | 2.505 | 9.557 | 9.549 | 0.075 | 11.056 | 10.418 | 5.771 | 10.939 | 11.357 | 3.818 | 9.858 | 9.830 | 0.282 |
0.05 | 2.692 | 2.746 | 2.021 | 2.741 | 2.698 | 1.570 | 2.288 | 2.287 | 0.064 | 2.630 | 2.519 | 4.246 | 2.636 | 2.758 | 4.623 | 2.414 | 2.412 | 0.083 |
0.8 | 0.069 | 0.070 | 1.840 | 0.070 | 0.069 | 1.420 | 0.068 | 0.068 | 0.142 | 0.068 | 0.067 | 0.541 | 0.068 | 0.066 | 2.186 | 0.068 | 0.068 | 0.121 |
1 | 0.060 | 0.062 | 3.596 | 0.061 | 0.060 | 0.673 | 0.061 | 0.061 | 0.954 | 0.060 | 0.060 | 0.422 | 0.060 | 0.059 | 1.437 | 0.059 | 0.060 | 0.945 |
3 | 0.037 | 0.037 | 2.570 | 0.037 | 0.037 | 1.556 | 0.037 | 0.037 | 0.420 | 0.037 | 0.037 | 0.446 | 0.037 | 0.036 | 1.739 | 0.036 | 0.036 | 0.157 |
5 | 0.033 | 0.033 | 1.752 | 0.033 | 0.033 | 1.146 | 0.032 | 0.032 | 0.293 | 0.032 | 0.032 | 1.056 | 0.032 | 0.032 | 1.400 | 0.032 | 0.032 | 0.003 |
8 | 0.032 | 0.033 | 1.043 | 0.033 | 0.032 | 0.636 | 0.031 | 0.031 | 0.227 | 0.031 | 0.031 | 1.627 | 0.031 | 0.031 | 0.972 | 0.031 | 0.031 | 0.076 |
10 | 0.033 | 0.033 | 0.733 | 0.033 | 0.033 | 0.413 | 0.031 | 0.031 | 0.188 | 0.032 | 0.031 | 1.897 | 0.031 | 0.031 | 0.770 | 0.031 | 0.031 | 0.109 |
15 | 0.035 | 0.035 | 0.251 | 0.035 | 0.035 | 0.005 | 0.032 | 0.032 | 0.167 | 0.033 | 0.032 | 2.302 | 0.032 | 0.032 | 0.410 | 0.033 | 0.033 | 0.139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayyed, M.I.; Mohammed, F.Q.; Mahmoud, K.A.; Lacomme, E.; Kaky, K.M.; Khandaker, M.U.; Faruque, M.R.I. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. 2020, 10, 7680. https://doi.org/10.3390/app10217680
Sayyed MI, Mohammed FQ, Mahmoud KA, Lacomme E, Kaky KM, Khandaker MU, Faruque MRI. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Applied Sciences. 2020; 10(21):7680. https://doi.org/10.3390/app10217680
Chicago/Turabian StyleSayyed, M. I., Faras Q. Mohammed, K. A. Mahmoud, Eloic Lacomme, Kawa M. Kaky, Mayeen Uddin Khandaker, and Mohammad Rashed Iqbal Faruque. 2020. "Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety" Applied Sciences 10, no. 21: 7680. https://doi.org/10.3390/app10217680
APA StyleSayyed, M. I., Mohammed, F. Q., Mahmoud, K. A., Lacomme, E., Kaky, K. M., Khandaker, M. U., & Faruque, M. R. I. (2020). Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Applied Sciences, 10(21), 7680. https://doi.org/10.3390/app10217680