XFEM-Based Multiscale Simulation on Monotonic and Hysteretic Behavior of Reinforced-Concrete Columns
Abstract
:1. Introduction
2. Description of Tested Reinforced-Concrete (RC) Columns
2.1. Specimen Layout
2.2. Material Properties
2.3. Test Setup and Loading Protocol
3. Modeling Procedures of Extended Finite Element Method (XFEM)-Based Multiscale Analysis
3.1. Theoretical Foundation of XFEM
3.2. Multiscale Modeling Methodology
3.3. Material Subroutines for Fiber Beam Elements and Their Verification
3.4. Material Properties of XFEM-Based Solid Elements
3.5. Boundary and Convergence Setting
3.6. Bond-Slip Effect and Spring Connector Elements
4. XFEM-Based Two-Scale Simulation on RC Columns under Cyclic Loading
4.1. Comparison of Failure Modes of Tested Specimens
4.2. Time History of Strain and Crack Width
4.3. Relationship between Lateral Displacement and Reaction Force
4.4. Computational Efficiency Analysis
5. Multiscale Simulation on RC Column under Monotonic Loading
5.1. Comparison of Failure Modes
5.2. Relationship between Lateral Displacement and Reaction Force
6. Concluding Remarks
- (1)
- The simulation results show that ignorance of bond-slip effect in FEM models leads to relatively higher load-bearing capacity and structural stiffness of RC columns. Moreover, the specific position of the main crack in numerical models of RC columns is sensitive to bond-slip effect between concrete and steel bars.
- (2)
- The distribution pattern of main cracks in RC columns subjected to cyclic loading can be effectively predicted by XFEM-based two-scale models, which agrees well with the experimental results. Compared with solid element models, the computational efficiency of the XFEM-based two-scale model can be obviously improved with guaranteed simulation accuracy.
- (3)
- The influence of ACR on the structural behavior of tested RC column specimens is forecast utilizing the XFEM-based two-scale modeling approach. The numerical results match well with that observed from the experimental study. RC columns subjected to higher ACRs present cracks at lower parts of RC columns, greater structural stiffness and higher load-bearing capacity.
- (4)
- The monotonic behavior of RC columns can be simulated using XFEM-based multiscale models with acceptable accuracy. Compared with CDP-based multiscale models, the XFEM-based multiscale models are more efficient in predicting the cracking phenomenon and global structural response of RC columns. However, severer convergence problems also exist in XFEM-based multiscale simulations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, J.T.; Xu, W.L.; Lin, J.H.; Weng, W.F. Xfem based simulation on the mechanism of pinching effect of RC columns. Eng. Mech. 2015, 32, 170–179. [Google Scholar]
- Jiang, Q.Y.; Ye, Y.C.; Liu, Z.R. Investigation on applying the smeared crack model. China Civil Eng. J. 2008, 41, 81–85. [Google Scholar]
- Chen, H.B.; Xu, B.; Mo, Y.L.; Zhou, T.M. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr. Build. Mater. 2018, 178, 418–431. [Google Scholar] [CrossRef]
- Chen, H.B.; Masud, M.; Sawab, J.; Huang, H.W.; Xu, B.; Mo, Y.L. Multiscale analysis of non-contact splices at drilled shaft to bridge column interface. Eng. Struct. 2018, 176, 28–40. [Google Scholar] [CrossRef]
- Yang, T.; Zo, D.Q. Numerical simulation of crack growth of reinforced concrete beam based on XFEM. J. Zhejiang Univ. Eng. Sci. 2013, 47, 495–501. [Google Scholar]
- Yin, G.S.; Zhou, X.F. Crack propagation simulation based on extended finite element method. J. Changan Univ. 2013, 33, 68–72. [Google Scholar]
- Yu, J.; Yu, K.; Shang, X.; Lu, Z. New extended finite element method for pinching effect in reinforced concrete columns. ACI Struct. J. 2016, 113, 689–699. [Google Scholar] [CrossRef]
- Yu, J.T.; Zhan, K.L.; Li, L.Z.; Yu, K.Q. Using xfem to model the effect of different axial compression on the hysteretic behaviour of the flexure-dominant rc columns. Struct. Des. Tall Spec. Build. 2018, 27, e1465. [Google Scholar] [CrossRef]
- Fang, X.J.; Jin, F.; Wang, J.T. Simulation of mixed-mode fracture of concrete using extended finite element method. Eng. Mech. 2007, 24, 46–52. [Google Scholar]
- Yu, T. The Extended Finite Element Method: Theory, Application and Program; Science Press: Beijing, China, 2014. [Google Scholar]
- López, C.M.; Carol, I.; Aguado, A. Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior. Mater. Struct. 2008, 41, 583–599. [Google Scholar] [CrossRef]
- Van Mier, J.G.M.; Van Vliet, M.R.A.; Wang, T.K. Fracture mechanisms in particle composites: Statistical aspects in lattice type analysis. Mech. Mater. 2002, 34, 705–724. [Google Scholar] [CrossRef]
- Ma, H.F.; Chen, H.Q.; Wu, J.P.; Li, B. Study on numerical algorithm of 3D meso-mechanics model of dam concrete. China. J. Comput. Mech. 2008, 25, 241–247. [Google Scholar]
- Du, X.L.; Jin, L. Meso-element equivalent model for macro-scopic mechanical properties analysis of concrete materials, China. J. Comput. Mech. 2012, 29, 654–661. [Google Scholar]
- Du, X.; Jin, L.; Ma, G. Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method. Int. J. Damage Mech. 2014, 23, 872–898. [Google Scholar] [CrossRef]
- Lu, X.Z.; Lin, X.C.; Ye, L.P. Multiscale finite element modeling and its application in structural analysis. J. Huazhong Univ. Sci. Technol. 2008, 25, 76–80. [Google Scholar]
- Zheng, Z.; Li, Z.; Chen, Z. Adaptive multiscale analyses on structural failure considering localized damage evolution on vulnerable joints. Arch. Civ. Mech. Eng. 2014, 14, 304–316. [Google Scholar] [CrossRef]
- Li, Z.; Chan, T.H.; Yu, Y.; Sun, Z. Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration-Part I: Modeling methodology and strategy. Finite Elem. Anal. Des. 2009, 45, 782–794. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, F.; Tang, Y. Multi-scale analyses on seismic damage and progressive failure of steel structures. Finite Elem. Anal. Des. 2012, 48, 1358–1369. [Google Scholar]
- Li, Z.; Zhou, T.; Chan, T.H.; Yu, Y. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges. Eng. Struct. 2007, 29, 1507–1524. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, S.; Li, D.; Xu, H.B.; Du, X.L.; Li, Z.B. A combined experimental and numerical analysis on the seismic behavior of short reinforced concrete columns with different structural sizes and axial compression ratios. Int. J. Damage Mech. 2018, 27, 1416–1447. [Google Scholar] [CrossRef]
- Jin, L.; Lan, Y.C.; Zhang, R.B.; Du, X.L. Impact performances of RC beams at/after elevated temperature: A meso-scale study. Eng. Fail. Anal. 2019, 105, 196–214. [Google Scholar] [CrossRef]
- Du, X.L.; Jin, L. Meso-scale numerical investigation on cracking of cover concrete induced by corrosion of reinforcing steel. Eng. Fail. Anal. 2014, 39, 21–33. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus Analysis User’s Guide; Dassault Systèmes: Vélizy-Villacoublay, France, 2014. [Google Scholar]
- Légeron, F.; Paultre, P.; Mazars, J. Damage mechanics modeling of nonlinear seismic behavior of concrete structures. J. Struct. Eng. 2005, 131, 946–955. [Google Scholar]
- Birtel, V.; Mark, P. Parameterised finite element modelling of RC beam shear failure. In Proceedings of the 19th Annual International ABAQUS Users’ Conference, Boston, MA, USA, 23–25 May 2006; pp. 95–108. [Google Scholar]
- Jin, L.; Yu, W.; Du, X.; Yang, W. Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete. Eng. Fract. Mech. 2019, 209, 317–332. [Google Scholar] [CrossRef]
- Jin, L.; Yu, W.; Su, X.; Zhang, S.; Du, X.; Han, J.; Li, D. Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings. Eng. Struct. 2018, 156, 567–586. [Google Scholar] [CrossRef]
- Opensees. 2020. Available online: https://opensees.berkeley.edu/ (accessed on 20 September 2020).
- Fib Model Code for Concrete Structures 2010; Ernst & Sohn, Wiley: Hoboken, NJ, USA, 2013.
- Jin, L.; Li, D.; Du, X.; Lu, A.; Ding, Z. Experimental and numerical study on size effect in eccentrically loaded stocky RC columns. J. Struct. Eng. 2016, 143, 223–239. [Google Scholar] [CrossRef]
Portland Cement Grade 42.5 | Water | Medium Coarse Sand | Aggregates | Water Cement Ratio | Sand Ratio (%) |
---|---|---|---|---|---|
474 | 180 | 476 | 1320 | 0.38 | 26.5 |
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Compressive Strength (MPa) | Density (kg/m3) | Fracture Energy (N/m) | Maximum Principal Stress (MPa) |
---|---|---|---|---|---|---|
Aggregates | 50.0 | 0.16 | / | 2733 | 288.0 | 6.0 |
Mortar | 24.7 | 0.20 | 27.2 | 2400 | 168.0 | 3.5 |
ITZ | 21.2 | 0.20 | 19.3 | 2400 | 115.2 | 2.4 |
Concrete | 31.3 | 0.20 | 40.9 * | 2400 | 216.0 | 4.5 |
Stirrup | 200.0 | 0.30 | 371.5 * (yielding stress) | 7800 | --- | --- |
Longitudinal steel bar | 200.0 | 0.30 | 379.6 * (yielding stress) | 7800 | --- | --- |
Model Type | Positive Peak Value (kN) | Positive Peak Error (%) | Negative Peak Value (kN) | Negative Peak Error (%) |
---|---|---|---|---|
C1-exprimental results | 84.15 | - | −87.66 | - |
C1-Two-scale | 89.33 | 6.15 | −93.87 | 7.09 |
C2-exprimental results | 89.53 | - | −93.06 | - |
C2-Two-scale | 93.09 | 3.98 | −97.33 | 4.58 |
C3-exprimental results | 106.43 | - | −102.33 | - |
C3-Two-scale | 96.95 | −8.90 | −102.44 | 0.11 |
Specimen No. | Comparison Parameter | Solid Element Model (T1) | Two-Scale Model (T2) | Time Ratio (T1/T2) |
---|---|---|---|---|
C1 | Number of elements | 2258 | 1144 | 0.79 |
Wall clock time(s) | 3081 | 2444 | ||
C2 | Number of elements | 2258 | 1144 | 0.80 |
Wall clock time(s) | 3540 | 2848 | ||
C3 | Number of elements | 2258 | 1144 | 0.79 |
Wall clock time(s) | 3572 | 2825 |
Model Type | Peak Value (kN) | Relative Error (%) | Displacement (mm) | Relative Error (%) |
---|---|---|---|---|
Tested specimen C4 | 99.7 | - | 19.82 | - |
CDP-based multiscale models | ||||
Circular sample 1 | 95.3 | −4.4 | 17.25 | −13.0 |
Circular sample 2 | 95.9 | −3.8 | 16.42 | −17.2 |
Circular sample 3 | 97.8 | −1.9 | 18.04 | −9.0 |
Elliptical sample | 97.2 | −2.5 | 18.52 | −6.6 |
Polygonal sample | 98.9 | −0.8 | 21.22 | −7.1 |
XFEM-based multiscale models | ||||
Homogeneous model | 95.3 | −4.4 | 16.29 | −17.5 |
Elliptical sample | 97.0 | −2.7 | 23.28 | 17.5 |
Circular sample | 99.9 | 0.2 | 25.22 | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xu, B.; Wang, J.; Nie, X.; Mo, Y.-L. XFEM-Based Multiscale Simulation on Monotonic and Hysteretic Behavior of Reinforced-Concrete Columns. Appl. Sci. 2020, 10, 7899. https://doi.org/10.3390/app10217899
Chen H, Xu B, Wang J, Nie X, Mo Y-L. XFEM-Based Multiscale Simulation on Monotonic and Hysteretic Behavior of Reinforced-Concrete Columns. Applied Sciences. 2020; 10(21):7899. https://doi.org/10.3390/app10217899
Chicago/Turabian StyleChen, Hongbing, Bin Xu, Jiang Wang, Xin Nie, and Yi-Lung Mo. 2020. "XFEM-Based Multiscale Simulation on Monotonic and Hysteretic Behavior of Reinforced-Concrete Columns" Applied Sciences 10, no. 21: 7899. https://doi.org/10.3390/app10217899
APA StyleChen, H., Xu, B., Wang, J., Nie, X., & Mo, Y. -L. (2020). XFEM-Based Multiscale Simulation on Monotonic and Hysteretic Behavior of Reinforced-Concrete Columns. Applied Sciences, 10(21), 7899. https://doi.org/10.3390/app10217899