In-Vitro Experimental Modeling of Oscillatory Respiratory Flow in a CT-Scanned OSAHS Tract
Abstract
:1. Introduction
2. In-Vitro Experimental OSAHS Flow Model
2.1. ETA Model with OSAHS
2.2. Optical Index Matching
2.3. Oscillatory Respiratory Flow Rate
3. PIV Techniques for the ETA Model with OSAHS
4. Results and Discussion
4.1. Reversal Phases
4.2. Peak Phases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kesson, A.M. Respiratory virus infections. Paediatr. Respir. Rev. 2007, 8, 240–248. [Google Scholar] [CrossRef]
- Lavie, L.; Lavie, P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur. Respir. J. 2009, 33, 1467–1484. [Google Scholar] [CrossRef] [PubMed]
- Nithiarasu, P.; Sazonov, I.; Yeo, S.Y. Scan-Based Flow Modelling in Human Upper Airways. In Patient-Specific Modeling in Tomorrow’s Medicine; Springer: Berlin/Heidelberg, Germany, 2011; pp. 241–280. [Google Scholar]
- Huang, E.I.; Huang, S.Y.; Lin, Y.C.; Lin, C.M.; Lin, C.K.; Huang, Y.C.; Su, J.A. Increasing Hypopnea in Sleep Breathing Disturbance Improves Postoperative Oxygen Saturation in Patients with Very Severe Obstructive Sleep Apnea. Appl. Sci. 2020, 10, 6539. [Google Scholar] [CrossRef]
- Wu, M.F.; Huang, W.C.; Chang, K.M.; Lin, P.C.; Kuo, C.H.; Hsu, C.W.; Shen, T.W. Detection Performance Regarding Sleep Apnea-Hypopnea Episodes with Fuzzy Logic Fusion on Single-Channel Airflow Indexes. Appl. Sci. 2020, 10, 1868. [Google Scholar] [CrossRef] [Green Version]
- Taherian, S.; Rahai, H.; Lopez, S.; Shin, J.; Jafari, B. Evaluation of human obstructive sleep apnea using computational fluid dynamics. Commun. Biol. 2019, 2, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Zhang, C.; Zhang, L. Experimental and numerical investigation on inspiration and expiration flows in a three-generation human lung airway model at two flow rates. Resp. Physiol. Neurobiol. 2019, 262, 40–48. [Google Scholar] [CrossRef]
- Liu, Y.; So, R.; Zhang, C.H. Modeling the bifurcating flow in a human lung airway. J. Biomech. 2002, 35, 465–473. [Google Scholar] [CrossRef]
- Zhang, C.H.; Liu, Y.; So, R.M.C.; Phan-Thien, N. The influence of inlet velocity profile on three-dimensional three-generation bifurcating flows. Comput. Mech. 2002, 29, 422–429. [Google Scholar] [CrossRef]
- Liu, Y.; So, R.M.C.; Zhang, C.H. Modeling the bifurcating flow in an asymmetric human lung airway. J. Biomech. 2003, 36, 951–959. [Google Scholar] [CrossRef]
- Lu, M.; Liu, Y.; Ye, J.; Luo, H.Y. Large Eddy simulation of flow in realistic human upper airways with obstructive sleep. Procedia Comput. Sci. 2014, 29, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yan, W.; Liu, Y.; Choy, Y.S.; Wei, Y. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway. Comput. Math. Methods Med. 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.; Li, Y.; Sun, J.; Qi, Y.; Li, P.; Li, Y.; Gu, Z. Computational fluid dynamics simulation of changes in the morphology and airflow dynamics of the upper airways in OSAHS patients after treatment with oral appliances. PLoS ONE 2019, 14, e0219642. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wu, W.; Ge, H. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method. Resp. Physiol. Neurobiol. 2020, 279, 103468. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Chung, S.K. An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Meas. Sci. Technol. 2004, 15, 1090–1096. [Google Scholar] [CrossRef]
- Im, S.; Heo, G.E.; Jeon, Y.J.; Sung, H.J.; Kim, S.K. Tomographic PIV measurements of flow patterns in a nasal cavity with geometry acquisition. Exp. Fluids 2013, 55. [Google Scholar] [CrossRef]
- Wu, H.; Wang, M.; Wang, J.; An, Y.; Wang, H.; Huang, Y. Direct visualizations of air flow in the human upper airway using in-vitro models. Sci. China Life Sci. 2019, 62, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Gutheil, E. Three-dimensional unsteady large eddy simulation of the vortex structures and the mono-disperse particle dispersion in the idealized human upper respiratory system. J. Aerosol Sci. 2017, 114, 195–208. [Google Scholar] [CrossRef]
- Cui, X.; Gutheil, E. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions. Resp. Physiol. Neurobiol. 2018, 252–253, 38–46. [Google Scholar] [CrossRef]
- Evans, H.B.; Castillo, L. Index-matched measurements of the effect of cartilaginous rings on tracheobronchial flow. J. Biomech. 2016, 49, 1601–1606. [Google Scholar] [CrossRef]
- Kim, S.K.; Chung, S.K. Investigation on the respiratory airflow in human airway by PIV. J. Vis. Jpn. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Adler, K.; Brücker, C. Dynamic flow in a realistic model of the upper human lung airways. Exp. Fluids 2007, 43, 411–423. [Google Scholar] [CrossRef]
- Janke, T.; Schwarze, R.; Bauer, K. Measuring three-dimensional flow structures in the conductive airways using 3D-PTV. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef]
- Janke, T.; Koullapis, P.; Kassinos, S.C.; Bauer, K. PIV measurements of the SimInhale benchmark case. Eur. J. Pharm. Sci. 2019, 133, 183–189. [Google Scholar] [CrossRef]
- Wright, S.F.; Zadrazil, I.; Markides, C.N. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef]
- Bates, A.J.; Schuh, A.; Amine-Eddine, G.; McConnell, K.; Loew, W.; Fleck, R.J.; Woods, J.C.; Dumoulin, C.L.; Amin, R.S. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 2019, 66, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Le, T.B.; Moghaddam, M.G.; Woodson, B.T.; Garcia, G.J.M. Airflow limitation in a collapsible model of the human pharynx: Physical mechanisms studied with fluid-structure interaction simulations and experiments. Physiol. Rep. 2019, 7, e14099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aycock, K.I.; Hariharan, P.; Craven, B.A. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef]
- Lizal, F.; Jedelsky, J.; Morgan, K.; Bauer, K.; Llop, J.; Cossio, U.; Kassinos, S.; Verbanck, S.; Ruiz-Cabello, J.; Santos, A.; et al. Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur. J. Pharm. Sci. 2018, 113, 95–131. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Vanselow, C.; Stöbener, D.; Kiefer, J.; Fischer, A. Particle image velocimetry in refractive index fields of combustion flows. Exp. Fluids 2019, 60. [Google Scholar] [CrossRef]
- Große, S.; Schröder, W.; Klaas, M.; Klöckner, A.; Roggenkamp, J. Time resolved analysis of steady and oscillating flow in the upper human airways. Exp. Fluids 2007, 42, 955–970. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle. Particuology 2011, 9, 424–431. [Google Scholar] [CrossRef]
- West, J.B. Respiratory Physiology: The Essentials, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Womersley, J.R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 1955, 127, 553. [Google Scholar] [CrossRef] [PubMed]
- Beresh, S.J. Comparison of PIV data using multiple configurations and processing techniques. Exp. Fluids 2009, 47, 883–896. [Google Scholar] [CrossRef]
- Kim, M.; Collier, G.J.; Wild, J.M.; Chung, Y.M. Effect of upper airway on tracheobronchial fluid dynamics. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, Y.; Sun, X.; Yu, S.; Gao, F. Numerical analysis of respiratory flow patterns within human upper airway. Acta Mech. Sinica PRC 2009, 25, 737–746. [Google Scholar] [CrossRef]
- Jalal, S.; Nemes, A.; Van de Moortele, T.; Schmitter, S.; Coletti, F. Three-dimensional inspiratory flow in a double bifurcation airway model. Exp. Fluids 2016, 57. [Google Scholar] [CrossRef]
- Lucey, A.D.; King, A.J.; Tetlow, G.A.; Wang, J.; Armstrong, J.J.; Leigh, M.S.; Paduch, A.; Walsh, J.H.; Sampson, D.D.; Eastwood, P.R.; et al. Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea. IEEE Trans. Biomed. Eng. 2010, 57, 2535–2548. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Ju, Y.; Zhang, C. In-Vitro Experimental Modeling of Oscillatory Respiratory Flow in a CT-Scanned OSAHS Tract. Appl. Sci. 2020, 10, 7979. https://doi.org/10.3390/app10227979
Zhu Z, Ju Y, Zhang C. In-Vitro Experimental Modeling of Oscillatory Respiratory Flow in a CT-Scanned OSAHS Tract. Applied Sciences. 2020; 10(22):7979. https://doi.org/10.3390/app10227979
Chicago/Turabian StyleZhu, Zhenshan, Yaping Ju, and Chuhua Zhang. 2020. "In-Vitro Experimental Modeling of Oscillatory Respiratory Flow in a CT-Scanned OSAHS Tract" Applied Sciences 10, no. 22: 7979. https://doi.org/10.3390/app10227979
APA StyleZhu, Z., Ju, Y., & Zhang, C. (2020). In-Vitro Experimental Modeling of Oscillatory Respiratory Flow in a CT-Scanned OSAHS Tract. Applied Sciences, 10(22), 7979. https://doi.org/10.3390/app10227979