Microwave Heat Treatment Induced Changes in Forage Hay Digestibility and Cell Microstructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Preparation and Microwave Treatment
2.3. Chemical Analyses
2.4. In Vitro Pepsin-Cellulase Digestibility
2.5. Scanning Electron Microscope Image Analysis (SEM-IA)
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Microwave Treated Hays
3.2. In Vitro Pepsin-Cellulase Digestibility
3.3. Scanning Electron Microscope Image Analysis (SEM-IA)
3.4. Relationship between Baseline Organic Nutrients and Minimum MW Energy Required for Maximum DMD% Increase
4. Discussion
4.1. Chemical Composition
4.2. Dry Matter Digestibility and Digestibility of Organic Matter in Dry Matter
4.3. Scanning Electron Microscope Image Analysis
4.4. Relationships between the Minimal Microwave Energy Input for Different Hay to Achieve Maximal Dry Matter Digestibility Increase
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, J. Cell wall characteristics in relation to forage digestion by ruminants. J. Agric. Sci. 1994, 122, 173–182. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Shaver, R.D.; Combs, D.K.; Undersander, D.J.; Bauman, L.M.; Seeger, T.K. Understanding ndf digestibility of forages. Focus Forage Univ. Wis. Ext. 2001, 3, 10. [Google Scholar]
- Harper, K.J.; McNeill, D.M. The role indf in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of indf in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Sundstol, F.; Mgheni, D.; Pedersen, I. Recent findings on upgrading of the feeding value of straw by chemical and biological methods. In Proceedings of the International Conference on Increasing Livestock Production through Utilization of Local Resources, Beijing, China, 18–22 October 1993; pp. 122–130. [Google Scholar]
- Cross, G.A.; Fung, D.Y.; Decareau, R.V. The effect of microwaves on nutrient value of foods. Crit. Rev. Food Sci. Nutr. 1982, 16, 355–381. [Google Scholar] [CrossRef] [PubMed]
- Narimani, S.; Taghizadeh, A.; Sis, N.M.; Parnian, F.; Nobari, B.B. Effects of compound treatment of exogenous feed enzymes and microwave irradiation on in vitro ruminal fermentation and intestinal digestion of guar meal. Indian J. Anim. Sci. 2014, 84, 436–441. [Google Scholar]
- Oliveira, M.; Franca, A. Microwave heating of foodstuffs. J. Food Eng. 2002, 53, 347–359. [Google Scholar] [CrossRef]
- Kalla, A.M.; Devaraju, R. Microwave energy and its application in food industry: A reveiw. Asian J. Dairy Food Res. 2017, 36, 37–44. [Google Scholar] [CrossRef]
- Brodie, G. Microwave heating in moist materials. In Advances in Induction and Microwave Heating of Mineral and Organic Materials; IntechOpen: London, UK, 2011. [Google Scholar]
- Choi, I.; Choi, S.J.; Chun, J.K.; Moon, T.W. Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J. Food Process. Preserv. 2006, 30, 407–419. [Google Scholar] [CrossRef]
- Sadeghi, A.; Shawrang, P. Effects of microwave irradiation on ruminal dry matter, protein and starch degradation characteristics of barley grain. Anim. Feed Sci. Technol. 2008, 141, 184–194. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Nikkhah, A.; Sadeghi, A. Changes in nutritive value and digestion kinetics of canola seed due to microwave irradiation. Asian Australas. J. Anim. Sci. 2010, 23, 347–354. [Google Scholar] [CrossRef]
- Brodie, G.; Rath, C.; Devanny, M.; Reeve, J.; Lancaster, C.; Doherty, T.; Harris, G.; Chaplin, S.; Laird, C. The effect of microwave treatment on animal fodder. J. Microw. Power Electromagn. Energy 2012, 46, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Long, R.; Zhang, D.; Hu, Z.; Pu, X. Effect of microwave treatment on chemical composition and in sacco digestibility of wheat straw in yak cow. Asian Australas. J. Anim. Sci. 2005, 18, 27–31. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. Volume i, Agricultural Chemicals, Contaminants, Drugs; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AFIA. Laboratory Methods Manual: A Reference Manual of Standard Methods for the Analysis of Fodder; Australian Fodder Industry Association Ltd.: Melbourne, Australia, 2011. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. J. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, G.; Rath, C.; Devanny, M.; Reeve, J.; Lancaster, C.; Harris, G.; Chaplin, S.; Laird, C. Effect of microwave treatment on lucerne fodder. Anim. Prod. Sci. 2010, 50, 124–129. [Google Scholar] [CrossRef]
- Brodie, G. Simultaneous heat and moisture diffusion during microwave heating of moist wood. Appl. Eng. Agric. 2007, 23, 179–187. [Google Scholar] [CrossRef]
- Conklin-Brittain, N.L.; Dierenfeld, E.S.; Wrangham, R.W.; Norconk, M.; Silver, S. Chemical protein analysis: A comparison of kjeldahl crude protein and total ninhydrin protein from wild, tropical vegetation. J. Chem. Ecol. 1999, 25, 2601–2622. [Google Scholar]
- Duodu, K.; Taylor, J.; Belton, P.; Hamaker, B. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Khan, N.A.; Wang, Z.; Yu, P. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J. Dairy Sci. 2014, 97, 446–457. [Google Scholar] [CrossRef]
- Sadeghi, A.; Shawrang, P. Effects of microwave irradiation on ruminal protein and starch degradation of corn grain. Anim. Feed Sci. Technol. 2006, 127, 113–123. [Google Scholar] [CrossRef]
- Sadeghi, A.; Shawrang, P. Effects of microwave irradiation on ruminal protein degradation and intestinal digestibility of cottonseed meal. Livest. Sci. 2007, 106, 176–181. [Google Scholar] [CrossRef]
- Dixon, R.; Stockdale, C. Associative effects between forages and grains: Consequences for feed utilisation. J. Aust. J. Agric. Res. 1999, 50, 757–774. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, R.; Kudra, T.J.D.T. Uniformity issue in microwave drying. Dry. Technol. 2011, 29, 652–660. [Google Scholar] [CrossRef]
- Du, C.-J.; Sun, D.-W. Object classification methods. J. Comput. Vis. Technol. Food Qual. Eval. 2008, 81. [Google Scholar] [CrossRef]
- Maheshwari, P.; Stanley, D.; Van De Voort, F.; Gray, J. Effect of microwave treatment on the microstructure of dehulled rapeseed. J. Cereal Chem. 1981, 58, 381–384. [Google Scholar]
- Mulligan, F.; Caffrey, P.; Rath, M.; Kenny, M.; O’mara, F. The effect of dietary protein content and hay intake level on the true and apparent digestibility of hay. Livest. Prod. Sci. 2001, 68, 41–52. [Google Scholar] [CrossRef]
- Nelson, S.O. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. J. Trans. ASAE 1996, 39, 1475–1484. [Google Scholar] [CrossRef]
- Metaxas, A.C.; Meredith, R.J. Industrial Microwave Heating; IET: London, UK, 1983. [Google Scholar]
Parameters | MW Time (MT) (s) | Forage Type (FT) | MT | FT×MT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Lucerne | Canola | Pasture | Oat | Wheat | LSD | p-Value | LSD | p-Value | ||
DM g/kg (fresh weight basis) | 0 | 930.7 aC | 902.2 aD | 928.6 aC | 904.5 aA | 896.0 aC | 0.36 | <0.001 | 0.81 | 0.197 |
20 | 935.9 aBC | 911.9 aCD | 931.2 aBC | 922.1 aA | 913.0 aB | |||||
40 | 939.7 aB | 925.6 aBC | 939.8 aC | 912.3 aA | 916.5 aAB | |||||
60 | 940.0 aB | 942.6 aAB | 941.6 aAB | 923.3 aA | 923.7 aA | |||||
80 | 947.5 aA | 948.1 aA | 943.2 aA | 930.3 aA | 921.3 aA | |||||
OM (g/kg) | 0 | 912.0 aA | 924.2 aA | 922.4 aA | 926.4 aA | 943.1 aA | 0.32 | 0.137 | 0.71 | 0.336 |
20 | 910.6 aA | 928.0 aA | 923.0 aA | 937.3 aA | 944.8 aA | |||||
40 | 911.0 aA | 929.3 aA | 922.8 aA | 934.5 aA | 943.4 aA | |||||
60 | 911.7 aA | 926.9 aA | 916.3 aA | 931.3 aA | 941.9 aA | |||||
80 | 909.4 aA | 929.1 aA | 914.5 aA | 931.3 aA | 945.5 aA | |||||
CP (g/kg) | 0 | 180.8 aA | 115.4 cdeB | 070.3 gA | 90.9 fA | 116.4 cdA | 0.67 | 0.716 | 1.50 | 0.007 |
20 | 186.2 aA | 144.9 bA | 058.2 gA | 100.7 efA | 109.5 cdefA | |||||
40 | 188.6 aA | 112.5 cdefB | 064.2 gA | 114.6 cdeA | 116.3 cdA | |||||
60 | 193.8 aA | 110.8 cdefB | 065.3 gA | 107.0 defA | 108.8 cdefA | |||||
80 | 190.5 aA | 122.6 cB | 069.6 gA | 108.1 cdefA | 110.9 cdefA | |||||
NDF (g/kg) | 0 | 315.4 aA | 604.1 aA | 660.3 aA | 467.1 aB | 562.2 aA | 0.80 | 0.026 | 1.78 | 0.156 |
20 | 311.3 aA | 605.8 aA | 634.3 aC | 486.5 aAB | 555.1 aA | |||||
40 | 328.7 aA | 642.3 aA | 632.8 aB | 493.9 aAB | 549.3 aA | |||||
60 | 335.0 aA | 625.6 aA | 608.2 aC | 494.9 aA | 544.9 aA | |||||
80 | 336.5 aA | 651.6 aA | 664.5 aA | 484.4 aAB | 577.3 aA | |||||
ADF (g/kg) | 0 | 241.2 aA | 432.5 aBC | 395.3 aAB | 312.7 aA | 307.7 aB | 1.04 | <0.001 | 2.32 | 0.358 |
20 | 230.6 aA | 420.8 aC | 391.9 aAB | 313.5 aA | 301.0 aB | |||||
40 | 245.5 aA | 452.0 aAB | 399.2 aAB | 311.4 aA | 313.9 aAB | |||||
60 | 256.5 aA | 448.5 aAB | 375.0 aB | 320.7 aA | 308.4 aB | |||||
80 | 256.3 aA | 466.8 aA | 416.3 aA | 326.1 aA | 335.2 aA | |||||
DMD (g/kg) | 0 | 658.1 eD | 484.2 lB | 558.3 hiAB | 719.0 abA | 623.5 fgBC | 0.90 | <0.001 | 2.01 | <0.001 |
20 | 679.3 dCD | 532.7 jA | 574.4 hA | 733.5 aA | 631.0 fB | |||||
40 | 701.0 bcBC | 455.0 mC | 575.9 hA | 731.1 aA | 655.9 eA | |||||
60 | 732.6 aA | 427.8 nD | 553.3 iB | 723.5 aA | 657.5 eA | |||||
80 | 714.7 abAB | 434.9 nACD | 512.1 kC | 685.8 cdB | 608.8 gC | |||||
DOMD (g/kg) | 0 | 581.5 eD | 396.9 mB | 501.8 jBC | 653.0 abA | 550.1 fgA | 0.83 | <0.001 | 1.85 | <0.001 |
20 | 609.8 dC | 444.1 lA | 515.9 ijAB | 662.3 aA | 569.8 fA | |||||
40 | 629.0 cBC | 357.5 nC | 536.0 ghA | 658.6 abA | 584.7 eB | |||||
60 | 665.5 aA | 335.3 nD | 478.8 kC | 651.9 abA | 595.4 deB | |||||
80 | 641.0 bcAB | 349.2 noC | 451.1 lD | 608.6 dB | 529.1 hiC |
Prediction Equation # | Sample Size | r2 | SE | p-Value |
---|---|---|---|---|
MME1 = −941.2 + 126.1 CP 1 g/kg | 15 | 0.79 | 242 | <0.001 |
MME2 = 1932 − 26.9 NDF 2 g/kg | 15 | 0.37 | 423 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishir, M.S.R.; Brodie, G.; Cullen, B.; Kaur, R.; Cho, E.; Cheng, L. Microwave Heat Treatment Induced Changes in Forage Hay Digestibility and Cell Microstructure. Appl. Sci. 2020, 10, 8017. https://doi.org/10.3390/app10228017
Shishir MSR, Brodie G, Cullen B, Kaur R, Cho E, Cheng L. Microwave Heat Treatment Induced Changes in Forage Hay Digestibility and Cell Microstructure. Applied Sciences. 2020; 10(22):8017. https://doi.org/10.3390/app10228017
Chicago/Turabian StyleShishir, Md Safiqur Rahaman, Graham Brodie, Brendan Cullen, Ravneet Kaur, Ellie Cho, and Long Cheng. 2020. "Microwave Heat Treatment Induced Changes in Forage Hay Digestibility and Cell Microstructure" Applied Sciences 10, no. 22: 8017. https://doi.org/10.3390/app10228017
APA StyleShishir, M. S. R., Brodie, G., Cullen, B., Kaur, R., Cho, E., & Cheng, L. (2020). Microwave Heat Treatment Induced Changes in Forage Hay Digestibility and Cell Microstructure. Applied Sciences, 10(22), 8017. https://doi.org/10.3390/app10228017