Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Extraction of Spectral Properties of Samples
2.3. Extraction of Fruit Properties
2.3.1. Destructive Measurement of the Starch Property
- (1)
- Peeling a part of the apple and cutting a piece of 0.5 g from it.
- (2)
- Crushing the piece with a mortar and extracting apple juice.
- (3)
- Preparing a buffer using the phosphate buffer solution.
- (4)
- Mixing the sediment from step (2) with 1.5 mL of buffer solution.
- (5)
- Performing centrifugation at 12,000 rpm for 20 min to completely separate the sediment from the mixture.
- (6)
- After complete separation of the precipitate from the solution, the resulting precipitate was mixed with a mixture of dimethyl sulfoxide/hydrochloric acid 4:1 and centrifuged at a speed of 12,000 rpm for 20 min.
- (7)
- Mixing the solution obtained from step (6) with iodine-hydrochloric acid reagent in a ratio of 1 to 5 and recording the number of absorption using a spectrophotometer (Optizen 2120 UV plus, Company: Mecasys Co., Ltd., Yuseong-gu, Daejeon, Korea) at 600 nm and the results were presented in terms of mg/g.
2.3.2. Destructive Measurement of TSS Property
2.4. Spectrum Used for Non-Destructive Estimation of Starch and TSS Properties
2.5. Non-Destructive Estimation of Starch and TSS Properties
- Generating the initial population or so-called initial random habitat and sorting them;
- Determining migration and immigration rates;
- Repeating step 4–8 for each habitat such as j;
- Steps 5 to 8 are repeated for each variable such as k at location j;
- Changes are made according to steps 6 to 8 with the probability of migrating to a habitation;
- Determine the origin of the migration using random values;
- Migrating from one habitation to another;
- Random changes (mutations) are applied to the variable;
- The set of new responses is evaluated;
- Combining the original population with the migration-related population and creating a new stage population;
- Return to step 3 if the termination is not fulfilled.
2.6. Performance Evaluation Criteria for Starch and TSS
3. Result and Discussion
3.1. Reflectance Spectra
3.2. Wavelengths Selection by the Hybrid ANN-SA
3.3. Performance of the Hybrid ANN-BBO in Estimating Fruit Properties Based on Spectral Data
3.4. Performance of the Method in Estimating Fruit Properties Based on the Most Effective Wavelengths
3.5. Comparison of the Performance of Hybrid ANN-BBO in Predicting Fruit Properties Using Spectral Data and Data Related to the Most Effective Wavelengths
3.5.1. Properties of Starch
3.5.2. Properties of Total Soluble Solids (TSS)
3.6. Comparison of the Proposed Method with Other Researchers
4. Conclusions
- The most effective wavelengths selected by hybrid artificial neural network-simulated annealing algorithm to estimate TSS correspond to the wavelengths around the peak of 950 nm. In addition, the most effective wavelengths estimate starch corresponds to the wavelengths around the peak of 850 nm.
- Due to the small amount of standard deviation of the results obtained by hybrid ANN-BBO in 100 iterations, it can be said that the proposed method has high reliability because of close results in different iterations.
- The TSS were predicted with a regression coefficient above 0.8 in all iterations. Since this feature is related to the ripening stage of fruits, a high-performance portable device can estimate Fuji apple’s ripening stage using the most effective wavelengths to manage post-harvest operations better.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blasco, J.; Aleixos, N.; Cubero, S.; Gomez-Sanchis, J.; Molto, E. Automatic sorting of Satsuma (Citrus unshiu) segments using computer vision and morphological features. Comput. Electron. Agric. 2009, 66, 1–8. [Google Scholar] [CrossRef]
- Leemans, V.; Destain, M. A real-time grading method of apples based on features extracted from defects. J. Food Eng. 2004, 61, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Kondo, S.; Uthaibutra, J.; Gemma, H. Comparison of 1-aminocyclopropane-1-carboxylic acid, abscisic acid and anthocyanin content of some apple cultivars during fruit growth and maturation. J. Jpn. Soc. Hort. Sci 1991, 60, 505–511. [Google Scholar] [CrossRef]
- Ncama, K.; Opara, U.L.; Tesfay, S.Z.; Fawole, O.A.; Magwaza, L.S. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange (Citrus sinensis) and ‘Star Ruby’ grapefruit (Citrus x paradisi Macfad). J. Food Eng. 2017, 193, 86–94. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhang, H.; Aiguo, O. Non-destructive measurement of internal quality of Nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Comput. Electron. Agric. 2010, 71, 10–14. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Opara, U.L. Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit and arils. Cyta J. Food 2014, 12, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Hernández-Hernández, J.L.; Arribas, J. A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties. Foods 2020, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Eisenstecken, D.; Stürz, B.; Robatscher, P.; Lozano, L.; Zanella, A.; Oberhuber, M. The potential of near infrared spectroscopy (NIRS) to trace apple origin: Study on different cultivars and orchard elevations. Postharvest Biol. Technol. 2019, 147, 123–131. [Google Scholar] [CrossRef]
- Gowen, A.A.; ODonnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging e an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Zhang, L.; McCarthy, M.J. Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol. Technol. 2012, 67, 96–101. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Guyer, D.E.; Fulbright, D.W.; Pease, A. Postharvest noninvasive assessment of fresh chestnut (Castanea spp.) internal decay using computer tomography images. Postharvest Biol. Technol. 2014, 94, 14–25. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hort. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Clement, A.; Dorais, M.; Vernon, N. Non-destructive measurement of fresh tomato lycopene content and other physicochemical characteristics using visible-NIR spectroscopy. J. Agric. Food 2008, 56, 9813–9818. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Schutze, W.; Schulz, H. Determination of lycopene and B-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, G.; Li, X.; He, H.; Wu, A.; Cai, R. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flowernode trait in cucumber (Cucumis sativus L.). Prog. Nat. Sci. 2005, 15, 407–413. [Google Scholar]
- Cavaco, A.M.; Antunes, M.D.; Panagopoulos, T.; Rosendo, M.; Pires, R.; Brázio, A.; Silva, L.; Afonso, A.M.; Guerra, R. Upgrading current practices in Vis/NIR spectroscopy for insitu orchard monitoring. Acta Hortic. 2018, 1194, 745–752. [Google Scholar] [CrossRef]
- Guerreiro, A.; Vieira, A.I.; Brázio, A.; Gago, C.; Cavaco, A.; Panagopoulos, T.; Veloso, F.; Antunes, M.D.; Guerra, R. Quality characterization of kiwifruit (Actinidia deliciosa) cv. Hayward using destructive and optical non-invasive methods. Acta Hortic. 2018, 1218, 497–502. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Paliotta, M.; Carbone, K. Classification and prediction of early-to-late ripening apricot quality using spectroscopic techniques combined with chemometric tools. Sci. Hortic. 2018, 240, 310–317. [Google Scholar] [CrossRef]
- Bexiga, F.; Rodrigues, D.; Guerra, R.; Brázio, A.; Balegas, T.; Cavaco, A.M.; Antunes, M.D.; Oliveira, J.V. A TSS classification study of ‘Rocha’ pear (Pyrus communis L.) based on noninvasive visible/near infra-red reflectance spectra. Postharvest Biol. Technol. 2017, 132, 23–30. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Karimzadeh, R.; Ilbeygi, E.; Arribas, J.I. Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosyst. Eng. 2020, 195, 136–151. [Google Scholar] [CrossRef]
- Uwadaira, Y.; Sekiyama, Y.; Ikehata, A. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy. Heliyon 2018, 4, e00531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira-Folador, G.; Bicudo, M.O.; Andrade, E.F.; Renard, C.M.G.C.; Bureau, S.; Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. LWT 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol. Technol. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.M.; Arribas, J.I. An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video. Agronomy 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Pourdarbani, R.; Sabzi, S.; García-Amicis, V.M.; García-Mateos, G.; Molina-Martínez, J.M.; Ruiz-Canales, A. Automatic Classification of Chickpea Varieties Using Computer Vision Techniques. Agronomy 2019, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Schouten, R.E.; Huijben, T.P.M.; Tijskens, L.M.M.; Kooten, O. Modelling quality attributes of truss tomatoes: Linking colour and firmness maturity. Postharvest Biol. Technol. 2007, 45, 298–306. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. J. CyTA J. Food 2018, 17, 87–95. [Google Scholar] [CrossRef]
- Hernández-Hernández, J.L.; Ruiz-Hernández, J.; García-Mateos, G.; González-Esquiva, J.M.; Ruiz-Canales, A.; Molina-Martínez, J.M. A new portable application for automatic segmentation of plants in agriculture. Agric. Water Manag. 2017, 183, 146–157. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Rossel, R.A.V. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 2008, 90, 72–83. [Google Scholar] [CrossRef]
- Hodge, J.E.; Hofreiter, B.T. Determination of Reducing Sugars and Carbohydrates. In Methods in Carbohydrate Chemistry; Whistler, R.L., Wolfrom, M.L., Eds.; Academic Press: New York, NY, USA, 1962; pp. 380–394. [Google Scholar]
- Ignat, T.; Lurie, S.; Nyasordzi, J.; Ostrovsky, V.; Egozi, H.; Hoffman, A.; Schmilovitch, Z. Forecast of apple internal quality indices at harvest and during storage by VIS-NIR spectroscopy. Food Bioprocess Technol. 2014, 7, 2951–2961. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Sabzi, S.; Arribas, J.I. A visible-range computer-vision system for automated, non-intrusive assessment of the pH value in Thomson oranges. Comput. Ind. 2018, 99, 69–82. [Google Scholar] [CrossRef]
- Sabzi, S.; Pourdarbani, R.; Kalantari, D.; Panagopoulos, T. Designing a fruit identification algorithm in orchard conditions to develop robots using video processing and majority voting based on hybrid artificial neural network. Appl. Sci. 2020, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Cavaco, A.M.; Pires, R.; Antunes, M.D.; Panagopoulos, T.; Brázio, A.; Afonso, A.M.; Silva, L.; Lucas, R.M.; Cadeiras, B.; Cruz, S.P.; et al. Validation of short wave near infrared calibration models for the quality and ripening of ‘Newhall’ orange on tree across years and orchards. Postharvest Biol. Technol. 2018, 141, 86–97. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Arribas, J. Non-destructive visible and short-wave near-infrared spectroscopic data estimation of various physicochemical properties of Fuji apple (Malus pumila) fruits at different maturation stages. Chemom. Intell. Lab. Syst. 2020, 206, 104147. [Google Scholar] [CrossRef]
Number of Layers | First Layer: 19 |
---|---|
Number of Neurons | 1 |
Transfer Function | tansig |
Backpropagation Network Training Function | traincgb |
Back-propagation Weight/Bias Learning Function | learnwh |
Properties | Number of Layer | Number of Neurons | Transfer Function | Backpropagation Network Training Function | Backpropagation Weight/Bias Learning Function |
---|---|---|---|---|---|
1st Layer: 21 | poslin | ||||
Starch | 3 | 2nd Layer: 18 | logsig | trainlm | learnk |
3rd Layer: 6 | radbas | ||||
TSS | 2 | 1st Layer: 16 | tribas | trainc | learngd |
2nd Layer: 8 | poslin |
Properties | Criterion | MSE | RMSE | MAE | R | R2 |
---|---|---|---|---|---|---|
Spectral data in the range 800–900 nm | Mean | 0.043 | 0.203 | 0.156 | 0.975 | 0.950 |
SD | ±0.014 | ±0.035 | ±0.027 | ±0.020 | ±0.038 | |
At best state of training | 0.015 | 0.12 | 0.093 | 0.967 | 0.953 | |
Spectral data of the most effective wavelengths | Mean | 0.046 | 0.213 | 0.163 | 0.941 | 0.885 |
SD | ±0.016 | ±0.033 | ±0.025 | ±0.016 | ±0.028 | |
At best state of training | 0.025 | 0.16 | 0.119 | 0.961 | 0.923 |
Properties | Criterion | MSE | RMSE | MAE | R | R2 |
---|---|---|---|---|---|---|
Spectral data in the range 920–980 nm | Mean | 0.069 | 0.261 | 0.203 | 0.947 | 0.897 |
SD | ±0.016 | ±0.032 | ±0.028 | ±0.029 | ±0.052 | |
At best state of training | 0.034 | 0.186 | 0.145 | 0.956 | 0.914 | |
Spectral data of the most effective wavelengths | Mean | 0.061 | 0.243 | 0.191 | 0.946 | 0.895 |
SD | ±0.019 | ±0.04 | ±0.034 | ±0.034 | ±0.061 | |
At best state of training | 0.023 | 0.153 | 0.119 | 0.962 | 0.925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourdarbani, R.; Sabzi, S.; Jarolmasjed, S.; Panagopoulos, T. Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties. Appl. Sci. 2020, 10, 8145. https://doi.org/10.3390/app10228145
Pourdarbani R, Sabzi S, Jarolmasjed S, Panagopoulos T. Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties. Applied Sciences. 2020; 10(22):8145. https://doi.org/10.3390/app10228145
Chicago/Turabian StylePourdarbani, Razieh, Sajad Sabzi, Sanaz Jarolmasjed, and Thomas Panagopoulos. 2020. "Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties" Applied Sciences 10, no. 22: 8145. https://doi.org/10.3390/app10228145
APA StylePourdarbani, R., Sabzi, S., Jarolmasjed, S., & Panagopoulos, T. (2020). Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties. Applied Sciences, 10(22), 8145. https://doi.org/10.3390/app10228145