In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Shear Bond Strength Evaluation (SBS)
2.3. Failure Mode Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosenstiel, S.F.; Land, M.F.; Crispin, B.J. Dental luting agents: A review of the current literature. J. Prosthet. Dent. 1999, 80, 280–301. [Google Scholar] [CrossRef]
- Miyahara, H.; Ikeda, H.; Fujio, Y.; Yoshii, S.; Nagamatsu, Y.; Kitamura, C.; Shimizu, H. Chemical alteration of Ag-Pd-Cu-Au alloy surface by alumina air-abrasion and its effect on bonding to resin cement. Dent. Mater. J. 2019, 38, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Manso, A.P.; Carvalho, R.M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent. Clin. N. Am. 2017, 61, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arnold, A.M.; Arnold, M.A.; Williams, V.D. Measurement of water sorption by resin composite adhesives with near-infrared spectroscopy. J. Dent. Res. 1992, 71, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.J. How to prepare zirconia and LD e.max restorations for cementation. Clin. Rep. 2014, 6, 1–4. [Google Scholar]
- Weiser, F.; Behr, M. Self-adhesive resin cements: A clinical review. J. Prosthodont. 2015, 24, 100–108. [Google Scholar] [CrossRef] [PubMed]
- De la Macorra, J.C.; Pradíes, G. Conventional and adhesive luting cements. Clin. Oral Investig. 2002, 6, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, G.H.; Hazelton, L.R.; Bales, D.J.; Lepe, X. The effect of a resin-based sealer on crown retention for three types of cement. J. Prosthet. Dent. 2004, 91, 428–435. [Google Scholar] [CrossRef]
- Schenke, F.; Hiller, K.A.; Schmalz, G.; Federlin, M. Marginal integrity of partial ceramic crowns within dentin with different luting techniques and materials. Oper. Dent. 2008, 33, 516–525. [Google Scholar] [CrossRef]
- Toman, M.; Toksavul, S.; Sarikanat, M.; Nergiz, I.; Schmage, P. Fracture resistance of endodontically treated teeth: Effect of tooth coloured post material and surface conditioning. Eur. J. Prosthodont. Restor. Dent. 2010, 18, 23–30. [Google Scholar] [PubMed]
- Soares, C.J.; Raposo, L.H.; Soares, P.V.; Santos-Filho, P.C.; Menezes, M.S.; Soares, P.B.; Magalhães, D. Effect of different cements on the biomechanical behavior of teeth restored with cast doweland-cores—In vitro and FEA analysis. J. Prosthodont. 2010, 19, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Krämer, N.; Lohbauer, U.; Frankenberger, R. Adhesive luting of indirect restorations. Am. J. Dent. 2000, 13, 60D–76D. [Google Scholar] [PubMed]
- Santos, G.C., Jr.; Santos, M.J.; Rizkalla, A.S. Adhesive cementation of etchable ceramic esthetic restorations. J. Can. Dent. Assoc. 2009, 75, 379–384. [Google Scholar] [PubMed]
- Kajihara, H.; Suzuki, S.; Minesaki, Y.; Kurashige, H.; Tanaka, T. Effect of filler loading on resin cement bonding to silanized buildup composites. Am. J. Dent. 2005, 18, 109–112. [Google Scholar]
- D’Arcangelo, C.; De Angelis, F.; D’Amario, M.; Zazzeroni, S.; Ciampoli, C.; Caputi, S. The influence of luting systems on the microtensile bond strength of dentin to indirect resin-based composite and ceramic restorations. Oper. Dent. 2009, 34, 328–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taira, Y.; Soeno, K. The effect of a peroxidase primer on bond strength of three luting systems to dentin. Eur. J. Oral Sci. 2009, 117, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Wolfart, M.; Lehmann, F.; Wolfart, S.; Kern, M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent. Mater. 2007, 23, 45–50. [Google Scholar] [CrossRef]
- Boscato, N.; Della Bona, A.; Del Bel Cury, A.A. Influence of ceramic pre-treatments on tensile bond strength and mode of failure of resin bonded to ceramics. Am. J. Dent. 2007, 20, 103–108. [Google Scholar]
- D’Arcangelo, C.; Vanini, L. Effect of three surface treatments on the adhesive properties of indirect composite restorations. J. Adhes. Dent. 2007, 9, 319–326. [Google Scholar]
- Furuchi, M.; Oshima, A.; Ishikawa, Y.; Koizumi, H.; Tanoue, N.; Matsumura, H. Effect of metal priming agents on bond strength of resin-modified glass ionomers joined to gold alloy. Dent. Mater. J. 2007, 26, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, S.; Minami, H.; Minesaki, Y.; Matsumura, H.; Tanaka, T. Effect of hydrofluoric acid etching on shear bond strength of an indirect resin composite to an adhesive cement. Dent. Mater. J. 2008, 27, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taira, Y.; Kamada, K.; Atsuta, M. Effects of primers containing thiouracil and phosphate monomers on bonding of resin to Ag-Pd-Au alloy. Dent. Mater. J. 2008, 27, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoknorm, R.; Isidor, F.; Ravnholt, G. Tensile bond strength of resin luting cement to a porcelain-fusing noble alloy. Int. J. Prosthodont. 1996, 9, 323–330. [Google Scholar]
- Moulin, P.; Degrange, M.; Picard, B. Influence of surface treatment on adherence energy of alloys used in bonded prosthetics. J. Oral Rehabil. 1999, 26, 413–421. [Google Scholar] [CrossRef]
- Scherrer, S.; Cesar, P.F.; Swain, M.V. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent. Mater. 2010, 26, e78–e93. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
- Phrukkanon, S.; Burrow, M.F.; Tyas, M.J. The influence of cross-sectional shape and surface area on the microtensile bond test. Dent. Mater. 1998, 14, 212–221. [Google Scholar] [CrossRef]
- Amaral, F.L.; Colucci, V.; Palma-Dibb, R.G.; Corona, S.A. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef]
- De Munck, J.; Van Landuyt, K.; Coutinho, E.; Poitevin, A.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Micro-tensile bond strength of adhesives bonded to Class-I cavity-bottom dentin after thermo-cycling. Dent. Mater. 2005, 21, 999–1007. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Raigrodski, A.J.; Hillstead, M.B.; Meng, G.K.; Chung, K.H. Survival and complications of zirconia-based fixed dental prostheses: A systematic review. J. Prosthet. Dent. 2012, 107, 170–177. [Google Scholar] [CrossRef]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tsoi, J.K.; Matinlinna, J.P.; Wong, H.M. Effects of some chemical surface modifications on resin zirconia adhesion. J. Mech. Behav. Biomed. Mater. 2015, 46, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Casucci, A.; Monticelli, F.; Goracci, C.; Mazzitelli, C.; Cantoro, A.; Papacchini, F.; Ferrari, M. Effect of surface pre-treatments on the zirconia ceramic-resin cement microtensile bond strength. Dent. Mater. 2011, 27, 1024–1030. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.; Meng, H.; Wu, X.; Chen, Y.; Zhang, H.; Chen, C. Effects of Luting Cements and Surface Conditioning on Composite Bonding Performance to Zirconia. J. Adhes. Dent. 2018, 20, 549–558. [Google Scholar]
- Piwowarczyk, A.; Lauer, H.C.; Sorensen, J.A. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials. J. Prosthet. Dent. 2004, 92, 265–273. [Google Scholar] [CrossRef]
- Capa, N.; Özkurt, Z.; Canpolat, C.; Kazazoglu, E. Shear bond strength of luting agents to fixed prosthodontic restorative core materials. Aust. Dent. J. 2009, 54, 334–340. [Google Scholar] [CrossRef]
- Yoshida, K.; Tsuo, Y.; Atsuta, M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.L.; Castillo-Oyagüe, R.; Lynch, C.D.; Montero, J.; Albaladejo, A. Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. J. Dent. 2013, 41, 31–41. [Google Scholar] [CrossRef]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar] [PubMed]
- Kitayama, S.; Nikaido, T.; Takahashi, R.; Zhu, L.; Ikeda, M.; Foxton, R.M.; Sadr, A.; Tagami, J. Effect of primer treatment on bonding of resin cements to zirconia ceramic. Dent. Mater. 2010, 26, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, H.; Nakayama, D.; Komine, F.; Blatz, M.B.; Matsumura, H. Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents. J. Adhes. Dent. 2012, 14, 385–392. [Google Scholar] [PubMed]
- Xie, H.; Tay, F.R.; Zhang, F.; Lu, Y.; Shen, S.; Chen, C. Coupling of 10-methacryloyloxydecyldihydrogenphosphate to tetragonal zirconia: Effect of pH reaction conditions on coordinate bonding. Dent. Mater. 2015, 31, e218–e225. [Google Scholar] [CrossRef]
- Chen, L.; Suh, B.I.; Brown, D.; Chen, X. Bonding of primed zirconia ceramics: Evidence of chemical bonding and improved bond strengths. Am. J. Dent. 2012, 25, 103–108. [Google Scholar]
- Kim, M.J.; Kim, Y.K.; Kim, K.H.; Kwon, T.Y. Shear bond strengths of various luting cements to zirconia ceramic: Surface chemical aspects. J. Dent. 2011, 39, 795–803. [Google Scholar] [CrossRef]
- Pilo, R.; Kaitsas, V.; Zinelis, S.; Eliades, G. Interaction of zirconia primers with yttria-stabilized zirconia surfaces. Dent. Mater. 2016, 32, 353–362. [Google Scholar] [CrossRef]
- Berzins, D.W.; Abey, S.; Costache, M.C.; Wilkie, C.A.; Roberts, H.W. Resin-modified glass-ionomer setting reaction competition. J. Dent. Res. 2010, 89, 82–86. [Google Scholar] [CrossRef]
- Sabatini, C.; Patel, M.; D’Silva, E. In vitro shear bond strength of three self-adhesive resin cements and a resin-modified glass ionomer cement to various prosthodontic substrates. Oper. Dent. 2013, 38, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Wan, A.C.A.; Yap, A.U.J.; Hastings, G.W. Acid–base complex reactions in resin-modified and conventional glass ionomer cements. J. Biomed. Mater. Res. 1999, 48, 700–704. [Google Scholar] [CrossRef]
- Young, A.M.; Rafeeka, S.A.; Howlett, J.A. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials 2004, 25, 823–833. [Google Scholar] [CrossRef]
- Wegner, S.M.; Gerdes, W.; Kern, M. Effect of different artificial aging conditions on ceramic-composite bond strength. Int. J. Prosthodont. 2002, 15, 267–272. [Google Scholar] [PubMed]
- Blatz, M.B.; Chiche, G.; Holst, S.; Sadan, A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007, 38, 745–753. [Google Scholar] [PubMed]
- Marchan, S.; Coldero, L.; Whiting, R.; Barclay, S. In vitro evaluation of the retention of zirconia-based ceramic posts luted with glass ionomer and resin cements. Braz. Dent. J. 2005, 3, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüthy, H.; Loeffel, O.; Hammerle, C.H. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dent. Mater. 2006, 22, 195–200. [Google Scholar] [CrossRef]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Yoshida, Y.; Van Meerbeek, B. Silane-coupling effect of a silane-containing self-adhesive composite cement. Dent. Mater. 2020, 36, 914–926. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; Sleem, D. Microtensile bond strength of lithium disilicate ceramics to resin adhesives. J. Adhes. Dent. 2014, 16, 547–552. [Google Scholar]
- Özcan, M.; Vallittu, P.K. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent. Mater. 2003, 19, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Della Bona, A.; Shen, C.; Anusavice, K.J. Work of adhesion of resin on treated lithia disilicate based ceramic. Dent. Mater. 2004, 20, 338–344. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef] [Green Version]
- Lise, D.P.; Perdigao, J.; Van Ende, A.; Zidan, O.; Lopes, G.C. Microshear Bond Strength of Resin Cements to Lithium Disilicate Substrates as a Function of Surface Preparation. Oper. Dent. 2015, 40, 524–532. [Google Scholar] [CrossRef]
- Attia, A. Influence of surface treatment and cyclic loading on the durability of repaired allceramic crowns. J. Appl. Oral Sci. 2010, 18, 194–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayad, M.F.; Fahmy, N.Z.; Rosenstiel, S.F. Effect of surface treatment on roughness and bond strength of a heat-pressed ceramic. J. Prosthet. Dent. 2008, 99, 123–130. [Google Scholar] [CrossRef]
- Guarda, G.B.; Correr, A.B.; Gonçalves, L.S.; Costa, A.R.; Borges, G.A.; Sinhoreti, M.A.; Correr-Sobrinho, L. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper. Dent. 2013, 38, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Della Bona, A.; Anusavice, K.J. Microstructure, composition, and etching topography of dental ceramics. Int. J. Prosthodont. 2002, 15, 159–167. [Google Scholar]
- Tian, T.; Tsoi, J.K.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lassila, L.V.; Özcan, M.; Yli-Urpo, A.; Vallittu, P.K. An introduction to silanes and their clinical applications in dentistry. Int. J. Prosthodont. 2004, 17, 155–164. [Google Scholar]
- Oliveira, A.S.; Ramalho, E.S.; Ogliari, F.A.; Moraes, R.R. Bonding self-adhesive resin cements to glass fibre posts: To silanate or not silanate? Int. Endod. J. 2011, 44, 759–763. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Breemer, C.R.; Gresnigt, M.M.; Cune, M.S. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review. Biomed. Res. Int. 2015, 2015, 148954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakki, A.; Cilli, R.; Mondelli, R.F.; Kalachandra, S.; Pereira, J.C. Influence of Ph environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Gerdolle, D.A.; Mortier, E.; Jacquot, B.; Panighi, M.M. Water sorption and water solubility of current luting cements: An in vitro study. Quintessence Int. 2008, 39, e107–e114. [Google Scholar]
- Yap, A.; Lee, C.M. Water sorption and solubility of resin-modified polyalkenoate cements. J. Oral Rehabil. 1997, 24, 310–314. [Google Scholar] [CrossRef]
- Abreu, A.; Loza, M.A.; Elias, A.; Mukhopadhyay, S.; Looney, S.; Rueggeberg, F.A. Tensile bond strength of an adhesive resin cement to different alloys having various surface treatments. J. Prosthet. Dent. 2009, 101, 107–118. [Google Scholar] [CrossRef]
- Hikage, S.; Hirose, Y.; Sawada, N.; Endo, K.; Ohno, H. Clinical longevity of resin-bonded bridges bonded using a vinyl-thiol primer. J. Oral Rehabil. 2003, 30, 1022–1029. [Google Scholar] [CrossRef]
- Hansson, O.; Bergström, B.A. Longitudinal study of resin-bonded prostheses. J. Prosthet. Dent. 1996, 76, 132–139. [Google Scholar] [CrossRef]
- Almilhatti, H.J.; Giampaolo, E.T.; Vergani, C.E.; Machado, A.L.; Pavarina, A.C.; Betiol, E.A. Adhesive bonding of resin composite to various Ni-Cr alloy surfaces using different metal conditioners and a surface modification system. J. Prosthodont. 2009, 18, 663–669. [Google Scholar] [CrossRef]
- Masuno, T.; Koizumi, H.; Ishikawa, Y.; Nakayama, D.; Yoneyama, T.; Matsumura, H. Effect of acidic monomers on bonding to SUS XM27 stainless steel, iron, and chromium with a tri-nbutylborane-initiated acrylic resin. J. Adhes. Dent. 2011, 13, 163–169. [Google Scholar]
- Muraguchi, K.; Minami, H.; Minesaki, Y.; Suzuki, S.; Tanaka, T. A study of self-adhesive resin cements for bonding to silver-palladium-copper-gold alloy—Effect of including primer components in cement base. Dent. Mater. J. 2011, 30, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsi, I.A.; Varoli, F.K.; Pieroni, C.H.; Ferreira, M.C.; Borie, E. In vitro tensile strength of luting cements on metallic substrate. Braz. Dent. J. 2014, 25, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozer, F.; Pak-Tunc, E.; Esen Dagli, N.; Ramachandran, D.; Sen, D.; Blatz, M.B. Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces. J. Adv. Prosthodont. 2018, 10, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.N.; Kim, S.H.; Yu, B.; Lee, Y.K. Influence of HEMA content on the mechanical and bonding properties of experimental HEMA-added glass ionomer cements. J. Appl. Oral Sci. 2009, 17, 340–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibino, Y.; Kuramochi, K.; Hoshino, T.; Moriyama, A.; Watanabe, Y.; Nakajima, H. Relationship between the strength of glass ionomers and their adhesive strength to metals. Dent. Mater. 2002, 18, 552–557. [Google Scholar] [CrossRef]
KAT | KAT | LD | LD | AU | AU | |
---|---|---|---|---|---|---|
24 h | TC | 24 h | TC | 24 h | TC | |
3M-GIC | 2.5 ± 1.1 A1 | 0.7 ± 0.6 A2 | 6.5 ± 3.5 A1 | 1.5 ± 1.6 A2 | 5.2 ± 2.1 A1 | 1.9 ± 1.4 A2 |
(100/0/0) | (100/0/0) | (100/0/0) | (100/0/0) | (100/0/0) | (100/0/0) | |
GC-GIC | 7.5 ± 4.5 B1 | 2.5± 1.9 B2 | 13.6 ± 2.1 B1 | 4.1 ± 2.1 B1 | 6.6 ± 2.7 A1 | 3.2 ± 1.8 AC2 |
(95/5/0) | (100/0/0) | (90/10/0) | (100/0/0) | (93/7/0) | (100/0/0) | |
3M-RES | 8.2 ± 2.9 B1 | 4.1 ± 2.9 B2 | 18.1 ± 8.9 C1 | 7.2 ± 4.1 C1 | 0.2 ± 0.1 B1 | 0.0 ± 0.0 B2 |
(90/10/0) | (100/0/0) | (85/15/0) | (100/0/0) | (100/0/0) | (100/0/0) | |
PAN | 20.3 ± 5.7 1C | 11.3 ± 3.9 C2 | 29.4 ± 5.5 D1 | 13.4 ± 6.1 D1 | 11.9 ± 5.1 C1 | 4.3 ± 3.2 AC2 |
(75/25/0) | (95/5/0) | (70/30/0) | (95/5/0) | (100/0/0) | (100/0/0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maño, E.P.; Algarra, R.M.; Fawzy, A.; Leitune, V.C.B.; Collares, F.M.; Feitosa, V.; Sauro, S. In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates. Appl. Sci. 2020, 10, 8157. https://doi.org/10.3390/app10228157
Maño EP, Algarra RM, Fawzy A, Leitune VCB, Collares FM, Feitosa V, Sauro S. In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates. Applied Sciences. 2020; 10(22):8157. https://doi.org/10.3390/app10228157
Chicago/Turabian StyleMaño, Encarna Piquer, Rafael Marco Algarra, Amr Fawzy, Vicente C. B. Leitune, Fabrício M. Collares, Victor Feitosa, and Salvatore Sauro. 2020. "In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates" Applied Sciences 10, no. 22: 8157. https://doi.org/10.3390/app10228157
APA StyleMaño, E. P., Algarra, R. M., Fawzy, A., Leitune, V. C. B., Collares, F. M., Feitosa, V., & Sauro, S. (2020). In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates. Applied Sciences, 10(22), 8157. https://doi.org/10.3390/app10228157