Optimization of Inspection Period in Natural Stone Claddings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Stone Cladding
2.1.1. Classification System
2.1.2. Inspection Period
2.2. Formulation of the Optimization Problem
- The solution x(1) is no worse than x(2) in any objective;
- The solution x(1) is strictly better than x(2) in at least one objective.
2.2.1. Maintenance Costs
2.2.2. Efficiency Index
2.2.3. Service Life
2.2.4. Number of Replacements
3. Results
3.1. Comparison of the Optimal Solutions for the Different Maintenance Strategies
3.2. Analysis of the Best and Worst Solutions for Each Maintenance Strategy
3.3. Recommendation about the Most and the Least Advantageous Maintenance Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sandak, A.; Sandak, J.; Brzezicki, M.; Riggio, M. Bio-Based Building Skin; Springer International Publishing: Singapore, 2019. [Google Scholar]
- Khalid, E.I.; Abdullah, S.; Hanafi, M.H.; Said, S.Y.; Hasim, M.S. The consideration of building maintenance at design stage in public buildings: The current scenario in Malaysia. Facilities 2019, 37, 942–960. [Google Scholar] [CrossRef]
- British Standards Institution. Code of Practice for the Design and Installation of Natural Stone Cladding and Lining—Part 1: General; Technical Report No. 8298-1; British Standards Institution (BSI): London, UK, 2010. [Google Scholar]
- Haagenrud, S.E. Part II—Factors causing degradation. In Joint CIB W80/RILEM TC 140—Prediction of Service Life of Building Materials and Components—Guide and Bibliography to Service Life and Durability Research for Buildings and Components; Jernberg, P., Lacasse, M., Haagenrud, S., Sjöström, C., Eds.; Conseil International du Bâtiment: Rotterdam, The Netherlands, 2004; pp. 1–105. [Google Scholar]
- Silva, A.; De Brito, J.; Gaspar, P.L. Methodologies for Service Life Prediction of Buildings: With a Focus on Façade Claddings; Springer International Publishing: Zurich, Switzerland, 2016. [Google Scholar]
- Narayan, V. Effective Maintenance Management: Risk and Reliability Strategies for Optimizing Performance; Industrial Press Inc.: New York, NY, USA, 2004. [Google Scholar]
- Faiz, R.B.; Edirisinghe, E.A. Decision making for predictive maintenance in asset information management. Interdiscip. J. Inf. Knowl. Manag. 2009, 4, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Frangopol, D.M. Decision making for probabilistic fatigue inspection planning based on multi-objective optimization. Int. J. Fatigue 2018, 111, 356–368. [Google Scholar] [CrossRef]
- Falorca, J.F. Main functions for building maintenance management: An outline application. Int. J. Build. Pathol. Adapt. 2019, 37, 490–509. [Google Scholar] [CrossRef]
- Shohet, I.M.; Puterman, M.; Gilboa, E. Deterioration patterns of building cladding components for maintenance management. Constr. Manag. Econ. 2002, 20, 305–314. [Google Scholar] [CrossRef]
- British Standards Institution. Facilities Maintenance Management. Code of Practice; Technical Report No. 8210; British Standards Institution (BSI): London, UK, 2020. [Google Scholar]
- Bureau Veritas. Gestion Technique du Patrimoine—Réhabilitation et Maintenance, Guide Veritas du Bâtiment; Bureau Veritas: Paris, France, 1993. [Google Scholar]
- Association Française de Normalisation. Maintenance. Concepts and Definitions of Maintenance Activities; Technical Report No. NF-X60-010; Association Française de Normalisation: Paris, France, 1994. [Google Scholar]
- Emídio, F.; De Brito, J.; Gaspar, P.L.; Silva, A. Application of the factor method to the estimation of the service life of natural stone cladding. Constr. Build. Mater. 2014, 66, 484–493. [Google Scholar] [CrossRef]
- Shohet, I.; Paciuk, M. Service life prediction of exterior cladding components under standard conditions. Constr. Manag. Econ. 2004, 22, 1081–1090. [Google Scholar] [CrossRef]
- Agence Qualité Construction. Fiches Pathologie Bâtiment; Agence Qualité Construction: Paris, France, 2019. [Google Scholar]
- Building Research Establishment. Defect Action Sheets—The Complete Set; Building Research Establishment Press: London, UK, 2001. [Google Scholar]
- Chang, C.Y.; Tsai, M.D. Knowledge-based navigation system for building health diagnosis. Adv. Eng. Inf. 2013, 27, 246–260. [Google Scholar] [CrossRef]
- Chew, Y.L. Maintainability of Facilities: For Building Professionals; Worlds Scientific Publishing Co. Pte. Ltd.: Singapore, 2010. [Google Scholar]
- Conseil International du Bâtiment. Building Pathology: A State-of-the-Art Report; Technical Report No. W86; Conseil International du Bâtiment: Delft, The Netherlands, 1993. [Google Scholar]
- Lacasse, M.A.; Kyle, B.; Talon, A.; Boissier, D.; Hilly, T.; Abdulghani, K. Optimization of the building maintenance management process using a Markovian model. In Proceedings of the 11DBMC International Conference on Durability of Building Materials and Components, Istanbul, Turkey, 11–14 May 2008. [Google Scholar]
- Lind, H.; Muyingo, H. Building maintenance strategies: Planning under uncertainty. Prop. Manag. 2012, 30, 14–28. [Google Scholar] [CrossRef]
- Madureira, S.; Flores-Colen, I.; De Brito, J.; Pereira, C. Maintenance planning of facades in current buildings. Construct. Build. Mater. 2017, 147, 790–802. [Google Scholar] [CrossRef]
- Ruparathna, R.; Hewage, K.; Sadiq, R. Multi-period maintenance planning for public buildings: A risk based approach for climate conscious operation. J. Clean. Prod. 2018, 170, 1338–1353. [Google Scholar] [CrossRef]
- Dekker, R. Applications of maintenance optimization models: A review and analysis. Reliab. Eng. Syst. Saf. 1996, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- MatLab. Available online: https://www.mathworks.com/help/gads/gamultiobj.html (accessed on 15 September 2020).
- Liu, M.; Frangopol, D.M. Optimizing bridge network maintenance management under uncertainty with conflicting criteria: Life-cycle maintenance, failure, and user costs. J. Struct Eng. 2006, 132, 1835–1845. [Google Scholar] [CrossRef]
- Bocchini, P.; Frangopol, D.M. A probabilistic computational framework for bridge network optimal maintenance scheduling. Reliab. Eng. Syst. Saf. 2011, 96, 332–349. [Google Scholar] [CrossRef]
- Orcesi, A.D.; Cremona, C.F. A bridge network maintenance framework for Pareto optimization of stakeholders/users costs. Reliab. Eng. Syst. Saf. 2010, 95, 1230–1243. [Google Scholar] [CrossRef]
- Orcesi, A.D.; Cremona, C.F. Optimal maintenance strategies for bridge networks using the supply and demand approach. Struct. Infrastruct. Eng. 2011, 7, 765–781. [Google Scholar] [CrossRef]
- Dandy, G.C.; Engelhardt, M. Optimal scheduling of water pipe replacement using genetic algorithms. J. Water Resour. Plan. Manag. 2001, 127, 214–223. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M. Multiobjective optimization of rehabilitation and leakage detection scheduling in water distribution systems. J. Water Resour. Plan. Manag. 2009, 135, 426–439. [Google Scholar] [CrossRef]
- Castro, P.M.; Grossmann, I.E.; Veldhuizen, P.; Espin, D. Optimal maintenance scheduling of a gas engine power plant using generalized disjunctive programming. AIChE J. 2014, 60, 2083–2097. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, A.; Pellegrini, M.; Rossi, J. Maintenance scheduling optimization for industrial centrifugal pumps. Int. J. Syst. Assur. Eng. Manag. 2019, 10, 848–860. [Google Scholar] [CrossRef]
- Hegazy, T.; Elhakeem, A. Multiple optimization and segmentation technique (MOST) for large-scale bilevel life cycle optimization. Can. J. Civ. Eng. 2011, 38, 263–271. [Google Scholar] [CrossRef]
- Dao, C.; Basten, R.; Hartmann, A. Maintenance scheduling for railway tracks under limited possession time. J. Transp. Eng. Part A Syst. 2018, 144. [Google Scholar] [CrossRef] [Green Version]
- Hopland, A.O.; Kvamsdal, S.F. Optimal maintenance scheduling for local public purpose buildings. Prop. Manag. 2016, 34, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Berardi, L.; Giustolisi, O.; Savic, D.A.; Kapelan, Z. An effective multi-objective approach to prioritisation of sewer pipe inspection. Water Sci. Technol. 2009, 60, 841–850. [Google Scholar] [CrossRef]
- Elmasry, M.; Zayed, T.; Hawari, A. Multi-objective optimization model for inspection scheduling of sewer pipelines. J. Constr. Eng. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Zio, E.; Viadana, G. Optimization of the inspection intervals of a safety system in a nuclear power plant by multi-objective differential evolution (MODE). Reliab. Eng. Syst. Safe. 2011, 96, 1552–1563. [Google Scholar] [CrossRef]
- International Organization for Standardization. Buildings and Constructed Assets—Service Life Planning—Part 1: General Principles and Framework; Technical Report No. 15686-1; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Farahani, A.; Wallbaum, H.; Dalenbäck, J.O. Optimized maintenance and renovation scheduling in multifamily buildings—A systematic approach based on condition state and life cycle cost of building components. Constr. Manag. Econ. 2019, 37, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Grelk, B.; Christiansen, C.; Schouenborg, B.; Malaga, K. Durability of marble cladding—A comprehensive literature review. J. ASTM Int. 2007, 4, 1–19. [Google Scholar] [CrossRef]
- Farmer, M.C.; Lyons, S.P. Stone cladding failure: The cause and consequences. In Proceedings of the 2nd Forensic Engineering Congress, San Juan, Puerto Rico, 21–23 May 2000. [Google Scholar]
- Thai-Ker, L.; Chung-Wan, W. Challenges of external wall tiling in Singapore. In Proceedings of the Qualicer 2006: IX World Congress on Ceramic Tile Quality, Castellón, Spain, 12–15 February 2006. [Google Scholar]
- Loughran, P. Failed Stone: Problems and Solutions with Concrete and Masonry; Birkhäuser—Publishers for Architecture: Basel, Switzerland, 2007. [Google Scholar]
- Siegesmund, S.; Snethlage, R. Stone in Architecture Properties, Durability; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Gaspar, P.; De Brito, J. Service life estimation of cement-rendered facades. Build. Res. Inf. 2008, 36, 44–55. [Google Scholar] [CrossRef]
- Silva, A.; De Brito, J.; Gaspar, P.L. Service life prediction model applied to natural stone wall claddings (directly adhered to the substrate). Constr. Build. Mater. 2011, 25, 3674–3684. [Google Scholar] [CrossRef]
- Branco, F.A.; De Brito, J. Handbook of Concrete Bridge Management; ASCE Press: Reston, VA, USA, 2004. [Google Scholar]
- Decree-Law No. 177/2001 (in Portuguese). Available online: https://dre.pt/pesquisa/-/search/331257/details/maximized (accessed on 8 October 2020).
- Wildman, R.; Gaynor, A. Topology optimization for robotics applications. In Robotic Systems and Autonomous Platforms, 1st ed.; Walsh, S.M., Strano, M.S., Eds.; Woodhead Publishing in Materials: Cambridge, UK, 2019; pp. 251–292. [Google Scholar]
- Deb, K. Introduction to evolutionary multiobjective optimization. In Multiobjective Optimization: Interactive and Evolutionary Approaches, 1st ed.; Branke, J., Deb, K., Miettinen, K., Słowiński, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 59–96. [Google Scholar]
- Ferreira, C.; Neves, L.C.; Silva, A.; De Brito, J. Stochastic maintenance models for ceramic claddings. Struct. Infrastruct. Eng. 2020, 16, 247–265. [Google Scholar] [CrossRef]
- Sánchez-Silva, M.; Klutke, G.-A. Reliability and Life-Cycle Analysis of Deteriorating Systems; Springer International Publishing: Zurich, Switzerland, 2016. [Google Scholar]
- Frangopol, D.M.; Kallen, M.J.; Van Noortwijk, J.M. Probabilistic models for lifecycle performance of deteriorating structures: Review and future directions. Prog. Struct. Eng. Mater. 2004, 6, 197–212. [Google Scholar] [CrossRef]
- Langdon, D. Life Cycle Costing (LCC) as a Contribution to Sustainable Construction. Guidance on the Use of the LCC Methodology and Its Application in Public Procurement; Davis Langdon Management Consulting: London, UK, 2007. [Google Scholar]
- Ferreira, C.; Silva, A.; De Brito, J.; Dias, I.S.; Flores-Colen, I. Definition of a condition-based model for natural stone claddings. J. Build. Eng. 2020, 33, 101643. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Lawless, J.F. The analysis of panel data under a Markov assumption. J. Am. Stat. Assoc. 1985, 80, 863–871. [Google Scholar] [CrossRef]
- Spider_plot. Available online: https://github.com/NewGuy012/spider_plot (accessed on 25 August 2020).
Degradation Condition | Anomalies | ka,n | % Area Affected | Severity of Degradation (%) | |
---|---|---|---|---|---|
A (kn = 0) | No visible degradation | - | - | Sw ≤ 1 | |
B (kn = 1) | Visual or surface degradation anomalies | Surface dirt | 0.13 | >10 | 1 < Sw ≤ 8 |
Moisture stains/localized stains/color change | 0.13 | ≤15 | |||
Flatness deficiencies | 0.13 | ≤10 | |||
Loss-of-integrity anomalies | Material degradation * ≤ 1% plate thickness | 1.00 | - | ||
Material degradation * ≤ 10% plate thickness Cracking width ≤ 1 mm | 1.00 | ≤20 | |||
C (kn = 2) | Visual or surface degradation anomalies | Moisture stains/localized stains/color change | 0.13 | >15 | 8 < Sw ≤ 20 |
Moss, lichen, algae growth/parasitic vegetation/efflorescence | 0.13 | ≤30 | |||
Flatness deficiencies | 0.13 | >10 and ≤50 | |||
Joint anomalies | Joint material degradation | 0.25 | ≤30 | ||
Material loss—open joint | 1.00 | ≤10 | |||
Bond-to-substrate anomalies | Scaling of stone near the edges Partial loss of stone material | 1.20 | ≤20 | ||
Loss-of-integrity anomalies | Material degradation * ≤ 10% plate thickness Cracking width ≤ 1 mm | 1.00 | >20 | ||
Material degradation * > 10% and ≤30% plate thickness Cracking width > 1 mm and ≤5 mm | 1.00 | ≤20 | |||
Fracture | 1.00 | ≤5 | |||
D (kn = 3) | Visual or surface degradation anomalies | Moss, lichen, algae growth/parasitic vegetation/efflorescence | 0.13 | >30 | 20 < Sw ≤ 45 |
Flatness deficiencies | 0.13 | >50 | |||
Joint anomalies | Joint material degradation | 0.25 | >30 | ||
Material loss—open joint | 1.00 | >10 | |||
Bond-to-substrate anomalies | Scaling of stone near the edges Partial loss of stone material | 1.20 | >20 | ||
Loss of adherence | 1.20 | ≤10 | |||
Loss-of-integrity anomalies | Material degradation * > 10% and ≤30% plate thickness Cracking width > 1 mm and ≤5 mm | 1.00 | >20 | ||
Material degradation * > 30% plate thickness Cracking width > 5 mm | 1.00 | ≤20 | |||
Fracture | 1.00 | >5 and ≤10 | |||
E (kn = 4) | Bond-to-substrate anomalies | Loss of adherence | 1.20 | >10 | Sw > 45 |
Loss-of-integrity anomalies | Material degradation * > 30% plate thickness Cracking width > 5 mm | 1.00 | >20 | ||
Fracture | 1.00 | >10 |
Parameters | TA | TB | TC | TD |
---|---|---|---|---|
Mean (years) | 4.1 | 42.9 | 22.4 | 49.9 |
Standard deviation (years) | 7.0 | 10.3 | 1.4 | 2.4 |
TA—transition between conditions A and B; TB—transition between conditions B and C; TC—transition between conditions C and D; TD—transition between conditions D and E. |
Maintenance Actions | Cost (€/m2) | Application Zone Conditions | Impact of the Maintenance Actions | ||
---|---|---|---|---|---|
PA (%) | PB (%) | PC (%) | |||
Inspection | 1.03 | All | - | - | - |
Cleaning operations | 31.37 | B | 15.0 | 85.0 | - |
Minor interventions | 68.80 | C | 0 | 80.4 | 19.6 |
Total replacement | 149.51 | D, E | 100.0 | - | - |
PA—probability of the application zone changing to condition A; PB—probability of the application zone changing to condition B; PC—probability of the application zone changing to condition C. |
Maintenance Strategy | Optimal Solution | Time Interval, tinsp (Years) | Maintenance Costs (€/m2) | Service Life (Years) | Efficiency Index | Number of Replacements |
---|---|---|---|---|---|---|
MS1 | S1 | 18.8 | 2.54 | 70 | 0.9057 | 1.17 |
S2 | 10.9 | 3.61 | 71 | 0.9155 | 1.42 | |
S3 | 1.0 | 20.47 | 70 | 0.9316 | 1.75 | |
MS2 | S4 | 18.8 | 4.32 | 163 | 0.9292 | 0.14 |
S5 | 11.9 | 5.82 | 157 | 0.9367 | 0.35 | |
S6 | 1.0 | 23.91 | 143 | 0.9449 | 0.57 | |
MS3 | S7 | 19.0 | 14.58 | 270 | 0.9460 | 0.02 |
S8 | 15.4 | 18.79 | 245 | 0.9489 | 0.02 | |
S9 | 1.0 | 74.59 | 154 | 0.9494 | 0.46 |
Maintenance Strategy | Optimal Solution | Time Interval, tinsp (Years) | Maintenance Costs (€/m2) | Costs Associated with Inspection (€/m2) | Costs associated with Maintenance (€/m2) |
---|---|---|---|---|---|
MS1 | S1 | 18.8 | 2.54 | 0.52 | 2.02 |
S2 | 10.9 | 3.61 | 1.16 | 2.45 | |
S3 | 1.0 | 20.47 | 17.16 | 3.31 | |
MS2 | S4 | 18.8 | 4.32 | 0.52 | 3.8 |
S5 | 11.9 | 5.82 | 1.03 | 4.79 | |
S6 | 1.0 | 23.91 | 16.67 | 7.24 | |
MS3 | S7 | 19.0 | 14.58 | 0.51 | 14.07 |
S8 | 15.4 | 18.79 | 0.71 | 18.08 | |
S9 | 1.0 | 74.59 | 17.16 | 57.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Optimization of Inspection Period in Natural Stone Claddings. Appl. Sci. 2020, 10, 8236. https://doi.org/10.3390/app10228236
Ferreira C, Silva A, de Brito J, Dias IS, Flores-Colen I. Optimization of Inspection Period in Natural Stone Claddings. Applied Sciences. 2020; 10(22):8236. https://doi.org/10.3390/app10228236
Chicago/Turabian StyleFerreira, Cláudia, Ana Silva, Jorge de Brito, Ilídio S. Dias, and Inês Flores-Colen. 2020. "Optimization of Inspection Period in Natural Stone Claddings" Applied Sciences 10, no. 22: 8236. https://doi.org/10.3390/app10228236
APA StyleFerreira, C., Silva, A., de Brito, J., Dias, I. S., & Flores-Colen, I. (2020). Optimization of Inspection Period in Natural Stone Claddings. Applied Sciences, 10(22), 8236. https://doi.org/10.3390/app10228236