Red Beetroot. A Potential Source of Natural Additives for the Meat Industry
Abstract
:Featured Application
Abstract
1. Introduction
2. Phytochemicals Present in Beetroot
2.1. Betalains
2.2. Phenolic Acids and Flavonoids
2.3. Nitrates and Nitrites
3. Potential Use of Beetroot for the Development of Functional Meat Products: Health Implications
4. Application of Beetroot in Meat Products
5. Conclusions and Future Trends
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, M.M.; Munekata, P.E.; de Souza Lopes, A.; do Nascimento, M.D.S.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Using chitosan and radish powder to improve stability of fermented cooked sausages. Meat Sci. 2020, 167, 108165. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.V.T.; dos Santos Baião, D.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.; Castanheira, E.M.S.; Fortes, A.G.; Pereira, D.M.; Rodrigues, A.R.O.; Pereira, R.; Gonçalves, M.S.T. Application of Natural Pigments in Ordinary Cooked Ham. Molecules 2020, 25, 2241. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.-E.E.; Kim, T.-K.K.; Kim, H.-W.W.; Seo, D.-H.H.; Kim, Y.-B.B.; Jeon, K.-H.H.; Choi, Y.-S.S. Effect of natural pre-converted nitrite sources on color development in raw and cooked pork sausage. Asian Australas. J. Anim. Sci. 2018, 31, 1358. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Toldrá, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products. Meat Sci. 2020, 171, 108272. [Google Scholar] [CrossRef]
- Jin, S.-K.K.; Choi, J.-S.S.; Moon, S.-S.S.; Jeong, J.-Y.Y.; Kim, G.-D.D. The Assessment of Red Beet as a Natural Colorant, and Evaluation of Quality Properties of Emulsified Pork Sausage Containing Red Beet Powder during Cold Storage. Korean J. Food Sci. Anim. Resour. 2014, 34, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Aykln-Dinçer, E.; Güngör, K.K.; Çaǧlar, E.; Erbaş, M. The use of beetroot extract and extract powder in sausages as natural food colorant. Int. J. Food Eng. 2020, 1. [Google Scholar] [CrossRef]
- Ceclu, L.; Nistor, O.V. Red Beetroot: Composition and Health Effects—A Review. J. Nutr. Med. Diet Care 2020, 6, 043. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health. Nutrients 2013, 5, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralla, T.; Salminen, H.; Wolfangel, T.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Value addition of red beet ( Beta vulgaris L.) by-products: Emulsion formation and stability. Int. J. Food Sci. Technol. 2019, 54, 619–625. [Google Scholar] [CrossRef]
- Choi, Y.-S.S.; Kim, T.-K.K.; Jeon, K.-H.H.; Park, J.-D.D.; Kim, H.-W.W.; Hwang, K.-E.E.; Kim, Y.-B.B. Effects of pre-converted nitrite from red beet and ascorbic acid on quality characteristics in meat emulsions. Korean J. Food Sci. Anim. Resour. 2017, 37, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valipour, M. How do different factors impact agricultural water management? Open Agric. 2016, 1, 89–111. [Google Scholar] [CrossRef]
- Valipour, M. Global experience on irrigation management under different scenarios. J. Water Land Dev. 2017, 32, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 23–59. ISBN 9780128026120. [Google Scholar]
- Desseva, I.; Stoyanova, M.; Petkova, N.; Mihaylova, D. Red beetroot juice phytochemicals bioaccessibility: An in vitro approach. Polish J. Food Nutr. Sci. 2020, 70, 45–53. [Google Scholar] [CrossRef]
- De Oliveira, S.P.A.; do Nascimento, H.M.A.; Sampaio, K.B.; de Souza, E.L. A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Crit. Rev. Food Sci. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Lauková, M. Utilisation of beetroot powder for bakery applications. Chem. Pap. 2018, 72, 1507–1515. [Google Scholar] [CrossRef]
- Mereddy, R.; Chan, A.; Fanning, K.; Nirmal, N.; Sultanbawa, Y. Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology. Food Chem. 2017, 215, 311–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Brooks, M.S.L. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—A Critical Review. Food Bioprocess Technol. 2018, 11, 17–42. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Babarykin, D.; Smirnova, G.; Pundinsh, I.; Vasiljeva, S.; Krumina, G.; Agejchenko, V. Red Beet (Beta vulgaris) Impact on Human Health. J. Biosci. Med. 2019, 7, 61–79. [Google Scholar]
- Corleto, K.A.; Singh, J.; Jayaprakasha, G.K.; Patil, B.S. Storage Stability of Dietary Nitrate and Phenolic Compounds in Beetroot (Beta vulgaris) and Arugula (Eruca sativa) Juices. J. Food Sci. 2018, 83, 1237–1248. [Google Scholar] [CrossRef]
- Czyżowska, A.; Siemianowska, K.; Śniadowska, M.; Nowak, A. Bioactive compounds and microbial quality of stored fermented red beetroots and red beetroot juice. Polish J. Food Nutr. Sci. 2020, 70, 35–44. [Google Scholar] [CrossRef]
- Nikan, M.; Manayi, A. Beta vulgaris L. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–158. ISBN 9780128124918. [Google Scholar]
- Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Nowacka, M.; Tappi, S.; Wiktor, A.; Rybak, K.; Miszczykowska, A.; Czyzewski, J.; Drozdzal, K.; Witrowa-Rajchert, D.; Tylewicz, U. The Impact of Pulsed Electric Field on the Extraction of Bioactive Compounds from Beetroot. Foods 2019, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Bucur, L.; Ţarălungă, G.; Schroder, V. The betalains content and antioxidant capacity of red beet (beta vulgaris L. subsp. vulgaris) root. Farmacia 2016, 64, 198–201. [Google Scholar]
- Akhavan, S.; Jafari, S.M. Nanoencapsulation of Natural Food Colorants. In Nanoencapsulation of Food Bioactive Ingredients; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–260. [Google Scholar]
- Villaño, D.; García-Viguera, C.; Mena, P. Colors: Health Effects. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 265–272. ISBN 9780123849533. [Google Scholar]
- Raikos, V.; McDonagh, A.; Ranawana, V.; Duthie, G. Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Sci. Hum. Wellness 2016, 5, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.G.; Weber, J.; Kneschke, E.M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef]
- Righi Pessoa da Silva, H.; da Silva, C.; Bolanho, B.C. Ultrasonic-assisted extraction of betalains from red beet ( Beta vulgaris L.). J. Food Process Eng. 2018, 41, e12833. [Google Scholar] [CrossRef]
- Vulić, J.J.; Ćebović, T.N.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Čanadanović, V.M.; Djilas, S.M.; Šaponjac, V.T.T. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J. Funct. Foods 2014, 6, 168–175. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Jaglan, S.; Sharma, P.; Panghal, A. Nutritional, physicochemical, and functional quality of beetroot (Beta vulgaris L.) incorporated Asian noodles. Cereal Chem. 2019, 96, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Lechner, J.F.; Stoner, G.D. Red beetroot and betalains as cancer chemopreventative agents. Molecules 2019, 24, 1602. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit. Contam. 2006, 23, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.M.; Munekata, P.E.S.; Jacinto-Valderrama, R.A.; Efraim, P.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci. 2020, 171, 108275. [Google Scholar] [CrossRef] [PubMed]
- Edziri, H.; Jaziri, R.; Haddad, O.; Anthonissen, R.; Aouni, M.; Mastouri, M.; Verschaeve, L. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. S. Afr. J. Bot. 2019, 126, 170–175. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Santos, E.M.; Lorenzo, J.M. Cruciferous vegetables as sources of nitrate in meat products. Curr. Opin. Biotechnol. 2020, (in press). [Google Scholar] [CrossRef]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 2020, 17, 3. [Google Scholar] [CrossRef] [Green Version]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Sucu, C.; Turp, G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Sci. 2018, 140, 158–166. [Google Scholar] [CrossRef]
- Hwang, K.-E.E.; Kim, T.-K.K.; Kim, H.-W.W.; Oh, N.-S.S.; Kim, Y.-B.B.; Jeon, K.-H.H.; Choi, Y.-S.S. Effect of fermented red beet extracts on the shelf stability of low-salt frankfurters. Food Sci. Biotechnol. 2017, 26, 929–936. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; da Barretto, A.C.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Taleghani, A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Biological effects of red beetroot and betalains: A review. Phyther. Res. 2020, 34, 1847–1867. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; De Jesus Ornelas-Paz, J.; Gonzalez-Aguilar, G.A. Nutritional and health-promoting properties of tropical and subtropical fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; Volume 1, pp. 21–78. ISBN 9781845697334. [Google Scholar]
- Zamani, H.; de Joode, M.E.J.R.; Hossein, I.J.; Henckens, N.F.T.; Guggeis, M.A.; Berends, J.E.; de Kok, T.M.C.M.; van Breda, S.G.J. The benefits and risks of beetroot juice consumption: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormesher, L.; Myers, J.E.; Chmiel, C.; Wareing, M.; Greenwood, S.L.; Tropea, T.; Lundberg, J.O.; Weitzberg, E.; Nihlen, C.; Sibley, C.P.; et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: A randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide Biol. Chem. 2018, 80, 37–44. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kabir, A.; Azizi, F.; Ghasemi, A. The nitrate-independent blood pressure-lowering effect of beetroot juice: A systematic review and meta-analysis. Adv. Nutr. 2017, 8, 830–838. [Google Scholar] [CrossRef]
- Burri, S.C.M.; Ekholm, A.; Bleive, U.; Püssa, T.; Jensen, M.; Hellström, J.; Mäkinen, S.; Korpinen, R.; Mattila, P.H.; Radenkovs, V.; et al. Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat Sci. 2020, 162, 108033. [Google Scholar] [CrossRef]
- Rey, A.I.; Hopia, A.; Kivikari, R.; Kahkonen, M. Use of natural food/plant extracts: Cloudberry (Rubus Chamaemorus), beetroot (Beta Vulgaris “Vulgaris”) or willow herb (Epilobium angustifolium) to reduce lipid oxidation of cooked pork patties. LWT Food Sci. Technol. 2005, 38, 363–370. [Google Scholar] [CrossRef]
- Kang, J.; Lee, G. Effects of Pigment of Red Beet and Chitosan on Reduced Nitrite Sausages—Food Science of Animal Resources. Korean J. Food Sci. Anim. Resour. 2003, 23, 215–220. [Google Scholar]
- Martínez, L.; Cilla, I.; Beltrán, J.A.; Roncalés, P. Comparative effect of red yeast rice (Monascus purpureus), red beet root (Beta vulgaris) and betanin (E-162) on colour and consumer acceptability of fresh pork sausages packaged in a modified atmosphere. J. Sci. Food Agric. 2006, 86, 500–508. [Google Scholar] [CrossRef]
- Ha, S.-R.; Choi, J.-S.; Jin, S.-K. The Physicochemical Properties of Pork Sausages with Red Beet Powder. J. Life Sci. 2015, 25, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.J.; Lee, H.C.; Chin, K.B. Effect of red beet on quality and color stability of low-fat sausages during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2010, 30, 1014–1023. [Google Scholar] [CrossRef]
- Swastike, W.; Suryanto, E.; Rusman, R.; Hanim, C.; Jamhari, J.; Erwanto, Y.; Jumari, J. The Substitution Effects of Tapioca Starch and Beetroot Powder as Filler On The Physical and Sensory Characteristics Of Chicken Sausage. J. Ilmu Teknol. Has. Ternak 2020, 15, 97–107. [Google Scholar] [CrossRef]
- Turp, G.Y.; Kazan, H.; Ünübol, H. The Usage of Red Beet Powder as Natural Colorant and Antioxidant in Sausage Production. CBU J. Sci 2016, 12, 303–311. [Google Scholar]
Beetroot Material | Pigments | Ref. | ||
---|---|---|---|---|
Betacyanins | Betaxanthins | Total Betalains | ||
Beetroot extract | 300 mg/L | 261 mg/L | 562 mg/L | Aykln-Dinçer et al. [9] |
16.3–20.7 mg/g | 19.0–30.78 mg/g | 39.7–47.1 mg/g | Georgiev et al. [38] | |
221–337 mg/L | 122–182 mg/L | - | Raikos et al. [36] | |
3.46–4.20 mg/g | 2.59–2.80 mg/g | - | Righi Pessoa da Silva et al. [39] | |
55.17 mg/100 g DM | 0.71 mg/100 g DM | - | Vulić et al. [40] | |
Beetroot pulp | - | - | 370 mg/100g | Chhikara et al. [41] |
Beetroot flour | - | - | 68–81 mg/g DM | Costa et al. [18] |
Grated beetroot | 38–116 mg/kg | 13–19 mg/kg | - | Czyżowska et al. [28] |
Beetroot juice | 24–69 mg/L | 6–19 mg/L | - | |
2.81 mg/g DM | 1.27 mg/g DM | - | Desseva et al. [20] |
Beetroot Material | Antioxidant Activity | Ref. | ||||
---|---|---|---|---|---|---|
DPPH | ABTS | FRAP | ORAC | CUPRAC | ||
Beetroot pulp | 70 (% inhibition) | - | - | - | - | Chhikara et al. [41] |
Beetroot leaves | - | - | - | 200.3 μmol TE/g DM | - | Ninfali and Angelino [45] |
Beetroot powder | 65 (% inhibition) | - | - | - | - | Costa et al. [18] |
7140 mg TE/g | 429 mg AA/100 g | 1275 μmol FE + 2/100g | - | - | Ozaki et al. [46] | |
Fresh beetroot | - | - | - | 18.21 μmol TE/g DM | - | Ninfali and Angelino [45] |
137 mg TE/100 g | 190 mg TE/100 g | 181 mg TE/100 g | - | 3889 mg TE/100 g | Guldiken et al. [37] | |
Boiled beetroot | 131 mg TE/100 g | 158 mg TE/100 g | 126 mg TE/100 g | - | 3376 mg TE/100 g | |
Dried beetroot | 143 mg TE/100 g | 188 mg TE/100 g | 170 mg TE/100 g | - | 3567 mg TE/100 g | |
Pickled beetroot | 114 mg TE/100 g | 122 mg TE/100 g | 66 mg TE/100 g | - | 2413 mg TE/100 g | |
Beetroot jam | 127 mg TE/100 g | 160 mg TE/100 g | 126 mg TE/100 g | - | 2931 mg TE/100 g | |
Beetroot puree | 139 mg TE/100 g | 186 mg TE/100 g | 148 mg TE/100 g | - | 3529 mg TE/100 g | |
Beetroot juice | 110 mg TE/100 g | 126 mg TE/100 g | 112 mg TE/100 g | - | 2397 mg TE/100 g | |
56.7 μmol TE/g DM | 95 μmol TE/g DM | 184.7 μmol TE/g DM | - | 222.8 μmol TE/g DM | Desseva et al. [20] | |
315 (IC50 μg/mL) | 515 (IC50 μg/mL) | - | - | Edziri et al. [47] | ||
Beetroot extract | - | - | - | 33.9 μmol TE/L | - | Aykln-Dinçer et al. [9] |
254 (IC50 μg/mL) | 359 (IC50 μg/mL) | - | - | - | Edziri et al. [47] | |
14.2–90 (% inhibition) | - | 1250–4100 μM TE/L | - | Georgiev et al. [38] | ||
- | - | 4.8–6.9 mol/L | - | - | Raikos et al. [36] | |
0.32–0.57 mg TE/g | - | 4.10–4.74 mg TE/g | - | - | Righi Pessoa da Silva et al. [39] |
Beetroot Material | Phenolic Compounds | Ref. | |
---|---|---|---|
Total Phenolic | Total Flavonoid | ||
Beetroot pulp | 245 mg/100 g | 0.88 mg/100 g | Chhikara et al. [41] |
Beetroot leaves | 12.76 mg/g DM | 11.64 mg/g DM | Ninfali and Angelino [45] |
Beetroot powder | 292 mg/100 g | - | Ozaki et al. [46] |
Fresh beetroot | 1.77 mg/g DM | 1.44 mg/g DM | Ninfali and Angelino [45] |
255 mg GAE/g | 260 mg RE/g | Guldiken et al. [37] | |
Grated beetroot | 570–920 mg GAE/kg | - | Czyżowska et al. [28] |
Boiled beetroot | 238 mg GAE/g | 261 mg RE/g | Edziri et al. [47] |
Dried beetroot | 347 mg GAE/g | 230 mg RE/g | |
Pickled beetroot | 192 mg GAE/g | 173 mg RE/g | |
Beetroot jam | 231 mg GAE/g | 143 mg RE/g | |
Beetroot puree | 236 mg GAE/g | 290 mg RE/g | |
Beetroot juice | 225 mg GAE/g | 126 mg RE/g | |
540–810 mg GAE/L | - | Czyżowska et al. [28] | |
30.8 mg GAE/g DM | 6.72 mg QE/g DM | Desseva et al. [20] | |
0.978 mg GAE/g | 1.42 mg CE/g | Edziri et al. [47] | |
Beetroot extract | 20.73 mg GAE/g | 39.75 mg CE/g | |
27.2 mg GAE/mL | - | Aykln-Dinçer et al. [9] | |
279–399 mg/L | - | Raikos et al. [36] | |
53–65 mg GAE/g | - | Righi Pessoa da Silva et al. [39] |
Beetroot Material | Meat Product | Amount | Main Effects | Ref. | |
---|---|---|---|---|---|
Nutritional and Technological Quality | Sensory Quality | ||||
Beetroot extract | Beef sausages | 5% (liquid extract) and 2% (powder extract) | ↓ Lipid oxidation | ↑ Color, flavor, and appearance scores | Aykln-dinçer et al. [9] |
↑ Redness and ↓ lightness and yellowness | ↑ Overall acceptability | ||||
↓ pH | |||||
Cooked ham | 0.4, 0.88, and 4.55 g/kg (non-encapsulated) and 7.29 g/kg (encapsulated) | ↑ Redness and yellowness; = lightness | - | Dias et al. [5] | |
Meat model system | 50, 100, and 200 ppm of GAE | ↓ Lipid oxidation | - | Burri et al. [61] | |
Cooked pork patties | 100 and 500 mg/kg | ↓ Lipid oxidation (TBARs) (in dose-dependent manner) | - | Rey et al. [62] | |
↓ Hexanal (in dose-dependent manner) | |||||
Beetroot pigments (purified) | Sausages | 0.02% (with or without cyclodextrine and chitosan) | No affect color parameters | - | Kang and Lee [63] |
↓ pH | |||||
↓ Residual nitrite | |||||
Ground pork loin | 2% | ↓ Lipid oxidation | - | Vieira Teixeira da Silva et al. [3] | |
Fermented beetroot extract | Raw and cooked meat emulsion system | 5 and 10% (with or without addition of ascorbic acid) | ↓ Lipid oxidation (than samples formulated without nitrite and similar values than samples formulated with commercial nitrite) | ↑ Color and odor scores (than samples formulated without nitrites) | Choi et al. [15] |
↑ Yellowness and = redness (than samples formulated with nitrite) | |||||
↓ pH | ↑ Overall acceptability | ||||
↓ Residual nitrite | |||||
Pork frankfurters | 1, 3, 5% | ↓ Lipid oxidation | No affect sensory acceptability | Hwang et al. [54] | |
↓ Microbial contents | |||||
↑ Redness and ↓ lightness and had low effect on yellowness | |||||
Pork sausages | 3% | ↑ Yellowness and ↓ redness and no affect lightness | - | Hwang et al. [6] | |
↓ pH | |||||
No affect lipid oxidation (in comparison with control samples without nitrite) and ↑ lipid oxidation (in comparison with control samples with nitrite) | |||||
↓ Microbial contents | |||||
↓ Residual nitrite | |||||
Beetroot juice | Fresh pork sausages | 0.5 and 1 mg/kg | ↑ Redness and ↓ lightness and had low effect on yellowness | ↑ Consumer acceptability | Martínez et al. [64] |
↓ Sausages discoloration | |||||
Beetroot powder | Turkey patties | 6% | ↑ TPC, vitamin C, lutein, α-, and β-carotene and tocopherol | - | Duthie et al. [13] |
↑ Oxidation stability | |||||
Emulsion-type pork sausages | 0.25 and 0.5% (with or without addition of 0.005% NaNO2) | ↑ Redness (except 0.25% without NaNO2) and yellowness and ↓ lightness | - | Ha et al. [65] | |
↓ pH | |||||
↓ Residual nitrite | |||||
Boiled sausages | 0.5% (with 0.0075% NaNO2) and 1% (without NaNO2) | ↑ Redness and yellowness and ↓ lightness | - | Jeong et al. [66] | |
No affect pH values | |||||
Emulsified pork sausage | 0.5 and 1% (with and without 0.0075 NaNO2) | ↑ pH | ↑ Color score | Jin et al. [8] | |
↓ Residual nitrite (in samples without the addition of NaNO2) | |||||
↑ Redness and ↓ lightness and had low effect on yellowness | No affect overall acceptability | ||||
No affect or ↑ lipid oxidation | |||||
Dry-fermented sausages | 0.5 and 1% | ↓ pH (1% of beetroot powder) | - | Ozaki et al. [46] | |
↑ Redness and ↓ lightness and yellowness | |||||
↓ Residual nitrate and nitrite (except for nitrite in 1% beetroot samples) | |||||
↓ Lipid oxidation | |||||
No affect microbial contents | |||||
Beef sausages (Sucuk) | 0.12, 0.24, and 0.35% (with 0.1%, 0.05% and without curing mixture containing nitrite, respectively) | Not affect or increase residual nitrite (after ripening period) | ↑ Inner color scores (the first 14 storage days) | Sucu and Turp [53] | |
↑ Lactic acid bacteria | |||||
↑ Lipid oxidation (low TBARs values in all samples) | ↑ Overall acceptability scores | ||||
Maintain redness in sausage inside surface (during storage) | |||||
Chicken sausage | - | ↑ Water holding capacity | ↑ Color scores | Swastike et al. [67] | |
No affect pH values | ↓ Flavor scores | ||||
No affect overall acceptability | |||||
Sausages | 2, 4, 6% | ↓ pH | - | Turp et al. [68] | |
↑ Redness and ↓ lightness and yellowness | |||||
↓ Lipid oxidation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. Appl. Sci. 2020, 10, 8340. https://doi.org/10.3390/app10238340
Domínguez R, Munekata PES, Pateiro M, Maggiolino A, Bohrer B, Lorenzo JM. Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. Applied Sciences. 2020; 10(23):8340. https://doi.org/10.3390/app10238340
Chicago/Turabian StyleDomínguez, Rubén, Paulo E. S. Munekata, Mirian Pateiro, Aristide Maggiolino, Benjamin Bohrer, and José M. Lorenzo. 2020. "Red Beetroot. A Potential Source of Natural Additives for the Meat Industry" Applied Sciences 10, no. 23: 8340. https://doi.org/10.3390/app10238340
APA StyleDomínguez, R., Munekata, P. E. S., Pateiro, M., Maggiolino, A., Bohrer, B., & Lorenzo, J. M. (2020). Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. Applied Sciences, 10(23), 8340. https://doi.org/10.3390/app10238340