Bio-Energy Generation from Synthetic Winery Wastewaters
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum and Winery Wastewater
2.2. Batch Experiments
2.3. Sampling Procedure and Analytical Methods
2.4. Fuel Cell
3. Results and Discussion
3.1. Acidogenic Fermentation of Glucose
3.2. Acidogenic Fermentation of Fructose
3.3. Winery Wastewater Fermentation
3.4. Electricity Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hao, H.-T.N.; Karthikeyan, O.P.; Heimann, K. Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels. Energies 2015, 8, 6350–6364. [Google Scholar] [CrossRef] [Green Version]
- Xi-Yu, C.; Chun-Zhao, L. Hydrogen Production via Thermophilic Fermentation of Cornstalk by Clostridium thermocellum. Energy Fuels 2011, 25, 1714–1720. [Google Scholar]
- Mechery, J.; Thomas, D.M.; Kumar, C.S.P.; Laigi, J.; Sylas, V.P. Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Conv. Bioref. 2019. [Google Scholar] [CrossRef]
- Kleerebezem, R.; van Loosdrecht, M.C. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 2007, 18, 207–212. [Google Scholar] [CrossRef]
- Kotay, S.M.; Das, D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Biores. Technol. 2007, 98, 1183–1190. [Google Scholar] [CrossRef]
- Chen, W.-M.; Tseng, Z.-J.; Lee, K.-S.; Chang, J.-S. Fermentative Hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy. 2005, 30, 1063–1070. [Google Scholar] [CrossRef]
- Rodriguez, L.; Villaseñor, J.; Fernández, F.J. Use of agro-food wastewaters for the optimisation of the denitrification process. Water Sci. Technol. 2005, 55, 63–70. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Symeonidou, M.P.; Matis, K.A. Technologies of winery wastewater treatment: A critical approach. Desal. Water Treat. 2016, 57, 3372–3386. [Google Scholar] [CrossRef]
- Carrillo-Reyes, J.; Albarrán-Contreras, B.A.; Buitrón, G. Influence of Added Nutrients and Substrate Concentration in Biohydrogen Production from Winery Wastewaters Coupled to Methane Production. Appl. Biochem. Biotechnol. 2019, 187, 140–151. [Google Scholar] [CrossRef]
- Das, D.; Veziroǧlu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 2001, 26, 13–28. [Google Scholar] [CrossRef]
- Dong, L.; Zhenhong, Y.; Yongming, S.; Xiaoying, K.; Yu, Z. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydrogen Energy 2009, 34, 812–820. [Google Scholar] [CrossRef]
- Kotay, S.M.; Das, D. Biohydrogen as a renewable energy resource—Prospects and potentials. Int. J. Hydrogen Energy 2008, 33, 258–263. [Google Scholar]
- Fang, H.H.P.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Biores. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- De Lucas, A.; Rodriguez, L.; Villaseñor, J.; Fernández, F.J. Fermentation of agro-food wastewaters by activated sludge. Water Res. 2007, 41, 1635–1644. [Google Scholar] [CrossRef]
- Fernández-Morales, F.J.; Villaseñor, J.; Infantes, D. Modeling and monitoring of the acclimatization of conventional activated sludge to a biohydrogen producing culture by biokinetic control. Int. J. Hydrogen Energy. 2010, 35, 10927–10933. [Google Scholar] [CrossRef]
- Rodríguez Mayor, L.; Villaseñor Camacho, J.; Fernández Morales, F.J. Operational optimisation of pilot scale biological nutrient removal at the Ciudad Real (Spain) domestic wastewater treatment plant. Water Air Soil Pollut. 2004, 152, 279–296. [Google Scholar] [CrossRef]
- Schlegel, H.G. General Microbiology, 7th ed.; Cambridge University Press: Stuttgart, Germany, 1993. [Google Scholar]
- International Commission on Microbiological Specifications of Foods (ICMSF). Microorganisms in Foods 6: Microbial Ecology of Food Commodities, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Seonaez, M.; Angulo, I. Aguas Residuales Urbanas. Tratamientos Naturales de bajo Costo y Aprovechamiento; Mundi-Prensa: Madrid, Spain, 1995. [Google Scholar]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Zhu, H.; Béland, M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy 2006, 31, 1980–1988. [Google Scholar] [CrossRef]
- Temudo, M.F.; Muyzer, G.; Kleerebezem, R.; van Loosdrecht, M.C.M. Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 2008, 80, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Colin, T.; Bories, A.; Sire, Y.; Perrin, R. Treatment and valorisation of winery wastewater by a new biophysical process (ECCF). Water Sci. Technol. 2005, 51, 99–106. [Google Scholar] [CrossRef]
- Malandra, L.; Wolfaardt, G.; Zietsman, A.; Viljoen-Bloom, M. Microbiology of a biological contactor for winery wastewater treatment. Water Res. 2003, 37, 4125–4134. [Google Scholar] [CrossRef]
- Quayle, W.C.; Fattore, A.; Zandona, R.; Christen, E.W.; Arienzo, M. Evaluation of organic matter concentration in winery wastewater: A case study from Australia. Water Sci. Technol. 2009, 60, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Infantes, D.; González del Campo, A.; Villaseñor, J.; Fernández, F.J. Kinetic model and study of the influence of pH, temperature and undissociated acids on acidogenic fermentation. Biochem. Eng. J. 2012, 66, 66–72. [Google Scholar] [CrossRef]
- Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Linares, J.J. PBI-based polymer electrolyte membranes fuel cells. Temperature effects on cell performance and catalyst stability. Electrochim. Acta 2007, 52, 3910–3920. [Google Scholar] [CrossRef]
- Pinar, F.J.; Cañizares, P.; Rodrigo, M.A.; Úbeda, D.; Lobato, J. Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. J. Power Sources 2011, 196, 4306–4313. [Google Scholar] [CrossRef]
- Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Linares, J.J.; Pinar, F.J. Study of the influence of the amount of PBI-H3PO4 in the catalytic layer of a high temperature PEMFC. Int. J. Hydrogen Energy 2010, 35, 1347–1355. [Google Scholar] [CrossRef]
- Rodríguez, J.; Kleerebezem, R.; Lema, J.M.; van Loosdrecht, M.C. Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng. 2006, 93, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef]
- Yin, J.; Yu, X.; Wang, K.; Shen, D. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int. J. Hydrogen Energy 2016, 41, 21713–21720. [Google Scholar] [CrossRef]
- Esteban-Gutiérrez, M.; Garcia-Aguirre, J.; Irizar, I.; Aymerich, E. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Waste Manag. 2018, 77, 203–212. [Google Scholar] [CrossRef]
- Den Boer, E.; Łukaszewska, A.; Kluczkiewicz, W.; Lewandowska, D.; King, K.; Reijonen, T.; Kuhmonen, T.; Suhonen, A.; Jääskeläinen, A.; Heitto, A.; et al. Volatile fatty acids as an added value from biowaste. Waste Manag. 2016, 58, 62–69. [Google Scholar] [CrossRef] [PubMed]
Component | Concentration (g L−1) | Component | Concentration (g L−1) |
---|---|---|---|
Glucose | 4.5000 | ZnSO4 7H2O | 0.0072 |
Fructose | 4.5000 | FeSO4 7H2O | 0.0070 |
(NH4)Cl | 3.0150 | MnCl2 4H2O | 0.0056 |
KH2PO4 | 1.7550 | CuCl 2H2O | 0.0050 |
NaCl | 6.5700 | CoCl2 6H2O | 0.0022 |
Na2SO4 | 0.1290 | CaCl2 | 0.0014 |
MgCl2 6H2O | 0.2700 | NiCl2 6H2O | 0.0011 |
EDTA | 0.1125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marks, S.; Dach, J.; Garcia-Morales, J.L.; Fernandez-Morales, F.J. Bio-Energy Generation from Synthetic Winery Wastewaters. Appl. Sci. 2020, 10, 8360. https://doi.org/10.3390/app10238360
Marks S, Dach J, Garcia-Morales JL, Fernandez-Morales FJ. Bio-Energy Generation from Synthetic Winery Wastewaters. Applied Sciences. 2020; 10(23):8360. https://doi.org/10.3390/app10238360
Chicago/Turabian StyleMarks, Stanislaw, Jacek Dach, Jose Luis Garcia-Morales, and Francisco Jesus Fernandez-Morales. 2020. "Bio-Energy Generation from Synthetic Winery Wastewaters" Applied Sciences 10, no. 23: 8360. https://doi.org/10.3390/app10238360
APA StyleMarks, S., Dach, J., Garcia-Morales, J. L., & Fernandez-Morales, F. J. (2020). Bio-Energy Generation from Synthetic Winery Wastewaters. Applied Sciences, 10(23), 8360. https://doi.org/10.3390/app10238360