SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesize of the SiO2/C Composite from Coal Fly Ash
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results
3.1. SiO2 Characterization
3.2. Effect of SiO2 Composition in the SiO2/C Composite on Its Structure and Coulombic Capacity
3.3. Effect of Heat Treatment on the SiO2/C Composite
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Purwanto, A.; Yudha, C.S.; Ubaidillah, U.; Widiyandari, H.; Ogi, T. NCA cathode material: Synthesis methods and performance enhancement efforts NCA cathode material: Synthesis methods and performance enhancement efforts. Mater. Res. Express 2018, 5, 122001. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Liu, C.; Song, D.W.; Zhang, L.Q.; Bie, L.J.; Zhang, Q.F.; Uchaker, E.; Candelaria, S.L.; Cao, G.Z.; Tarascon, J.M.; et al. A new synthesis strategy towards enhancing the structure and cycle stabilities of the LiNi0.80Co0.15Al0.05O2 cathode material. J. Mater. Chem. A 2017, 5, 835–841. [Google Scholar] [CrossRef]
- Wikner, E.; Thiringer, T. Extending battery lifetime by avoiding high SOC. Appl. Sci. 2018, 8, 1825. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, N.; Jahn, M.; Pfleging, W.; Seifert, H.J. Improved capacity retention of SiO2-coated LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. Appl. Sci. 2019, 9, 3671. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Yoon, C.S.; Amine, K.; Sun, Y.K. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2by AlF3coating. J. Power Sources 2013, 234, 201–207. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, J.; Zhang, W. Capacity Decay Mechanism of the LCO + NMC532/Graphite cells combined with post-mortem technique. Energies 2017, 10, 1147. [Google Scholar] [CrossRef]
- Yao, X.L.; Xie, S.; Chen, C.H.; Wang, Q.S.; Sun, J.H.; Li, Y.L.; Lu, S.X. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 2005, 50, 4076–4081. [Google Scholar] [CrossRef]
- Purwanto, A.; Muzayanha, S.U.; Yudha, C.S.; Widiyandari, H.; Jumari, A.; Dyartanti, E.R.; Nizam, M. High Performance of Salt-Modified—LTO Anode in LiFePO4 Battery. Appl. Sci. 2020, 10, 7135. [Google Scholar] [CrossRef]
- Bai, X.; Li, T.; Bai, Y.J. Capacity degradation of Li4Ti5O12during long-term cycling in terms of composition and structure. Dalt. Trans. 2020, 49, 10003–10010. [Google Scholar] [CrossRef]
- Kleiner, K.; Dixon, D.; Jakes, P.; Melke, J.; Yavuz, M.; Roth, C.; Nikolowski, K.; Liebau, V.; Ehrenberg, H. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries. J. Power Sources 2015, 273, 70–82. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Magasinski, A.; Yushin, G. Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode. J. Electrochem. Soc. 2010, 157, A1139. [Google Scholar] [CrossRef]
- Pharr, M.; Zhao, K.; Wang, X.; Suo, Z.; Vlassak, J.J. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Lett. 2012. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, X.; Lu, Z. Systematic investigation of prelithiated SiO2 particles for high-performance anodes in lithium-ion battery. Appl. Sci. 2018, 8, 1245. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.K.S.; Mathur, L.; Roy, P.K. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J. Asian Ceram. Soc. 2018, 6, 299–313. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Liu, H.; Liu, Z.Q. SiO2@C hollow sphere anodes for lithium-ion batteries. J. Mater. Sci. Technol. 2017, 33, 239–245. [Google Scholar] [CrossRef]
- Meng, J.; Cao, Y.; Suo, Y.; Liu, Y.; Zhang, J.; Zheng, X. Facile Fabrication of 3D SiO2@Graphene Aerogel Composites as Anode Material for Lithium Ion Batteries. Electrochim. Acta 2015, 176, 1001–1009. [Google Scholar] [CrossRef]
- Yudha, C.S.; Muzayanha, S.U.; Widiyandari, H.; Iskandar, F.; Sutopo, W.; Purwanto, A. Synthesis of LiNi0.815Co0.15Al0.035O2 Cathode Material and its Performance in an NCA/Graphite Full-Battery. Energies 2019, 12, 1886. [Google Scholar] [CrossRef] [Green Version]
- Yudha, C.S.; Muzayanha, S.U.; Rahmawati, M.; Widiyandari, H.; Sutopo, W.; Nizam, M.; Santosa, S.P.; Purwanto, A. Fast production of high performance LiNi0.815Co0.15Al0.035O2 cathode material via urea-assisted flame spray pyrolysis. Energies 2020, 13, 2757. [Google Scholar] [CrossRef]
- Affandi, S.; Setyawan, H.; Winardi, S.; Purwanto, A.; Balgis, R. A facile method for production of high-purity silica xerogels from bagasse ash. Adv. Powder Technol. 2009, 20, 468–472. [Google Scholar] [CrossRef]
- Babaa, M.R.; Moldabayeva, A.; Karim, M.; Zhexembekova, A.; Zhang, Y.; Bakenov, Z.; Molkenova, A.; Taniguchi, I. Development of a novel SiO2 based composite anode material for Li-ion batteries. Mater. Today Proc. 2017, 4, 4542–4547. [Google Scholar] [CrossRef]
- Ikhsanudin, M.N.; Yudha, C.S.; Utaminingtyas, S.; Purwanto, A.; Widiyandari, H.; Jumari, A.; Dyartanti, E.R. NaCl Doped LiNi0.815Co0.15Al0.035O2 via Solid-State Reaction for Li-Ion Batteries. In Proceedings of the IEEE International Conference on Technology and Policy in Electric Power & Energy (ICT-PEP), Yogyakarta, Indonesia, 16–18 October 2018; pp. 27–31. [Google Scholar] [CrossRef]
- Wu, B.; Ren, Y.; Mu, D.; Zhang, C.; Liu, X.; Yang, G.; Wu, F. Effect of sodium chloride as electrolyte additive on the performance of mesocarbon microbeads electrode. Int. J. Electrochem. Sci. 2013, 8, 670–677. [Google Scholar]
- He, Y. Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite–SiOx power batteries under high temperature and discharge cycling conditions. J. Mater. Chem. A Mater. Energy Sustain. 2017, 6, 65–72. [Google Scholar]
- Chen, T.; Wu, J.; Zhang, Q.; Su, X. Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources 2017, 363, 126–144. [Google Scholar] [CrossRef]
- Chang, W.S.; Park, C.M.; Kim, J.H.; Kim, Y.U.; Jeong, G.; Sohn, H.J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899. [Google Scholar] [CrossRef]
- Echeverría, J.C.; Faustini, M.; Garrido, J.J. Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens. Actuators B Chem. 2016, 222, 1166–1174. [Google Scholar] [CrossRef]
- Witoon, T.; Tatan, N.; Rattanavichian, P.; Chareonpanich, M. Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent. Ceram. Int. 2011, 37, 2297–2303. [Google Scholar] [CrossRef]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt 3 particles. Langmuir 2005, 21, 1931–1936. [Google Scholar] [CrossRef]
- Lü, Y.; Ling, L.; Wu, D.; Liu, L.; Zhang, B. Preparation of mesocarbon microbeads from coal tars. J. Fuel Chem. Technol. 1998, 26, 467. [Google Scholar]
- Zhang, L.; Shen, K.; He, W.; Liu, Y.; Guo, S. SiO2@graphite composite generated from sewage sludge as anode material for lithium ion batteries. Int. J. Electrochem. Sci. 2017, 12, 10221–10229. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, W.; Yu, P.; Pan, N.; Hu, H.; Zheng, M.; Xiao, Y.; Liu, Y.; Liang, Y. Facile synthesis of core-shell structured SiO2@carbon composite nanorods for high-performance lithium-ion batteries. Nanomaterials 2020, 10, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Component | O | Si | Fe | Ca | Al | Na | Mg | K | S | Ti | Cl | P | Mn | Trace Metals |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | 36.6 | 20.4 | 18.1 | 9.4 | 4.0 | 3.5 | 3.1 | 1.2 | 1.1 | 0.7 | 0.5 | 0.4 | 0.3 | 0.7 |
Content of SiO2 (wt%) | Initial Specific Capacity Based on the Anode (mAh g−1) | Columbic Efficiency (%) |
---|---|---|
0 | 340 | 85 |
1 | 356 | 83 |
3 | 365 | 80 |
5 | 423 | 78 |
10 | 541 | 76 |
30 | 552 | 72 |
Heat Treatment Temperature (°C) | Initial Specific Capacity (mAh g−1) | Columbic Efficiency (%) |
---|---|---|
400 | 506 | 74 |
500 | 586 | 76 |
600 | 705 | 82 |
Precursors | Product | Methods | Voltage (V) | Initial Specific Capacity (mAh/g) | Retention Capacity | Rate Performances | Ref. |
---|---|---|---|---|---|---|---|
TEOS | SiO2/Graphene Aerogel | Hydrothermal | 0–3 V | 453 (half cell) | ~100% (300 cycles) | 103 mAh/g (5 A/g) | [18] |
TEOS | SiO2/C Hollow sphere | Precipitation | 0–3 V | 400 (half cell) | 421% (160 cycles) | - | [17] |
TEOS | SiO2/C nanorods | Precipitation | 0–3 V | 498 (half cell) | 95% (100 cycles) | 345 mAh/g (1 A/g) | [33] |
SiO2 nanoparticle | Lithiated SiO2 | Heat treatment | 0–3 V | 1859 (half cell) | 70% (50 cycles) | 100 mAh/g (~2 A/g) | [14] |
Coal derived Fly ash | SiO2/Graphite | Ball Milling-Heat Treatment | 2.7–4.2 V | 541 (full-cell) | 87% (20 cycles) | 410 mAh/g (372 mAh/g) | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumari, A.; Yudha, C.S.; Widiyandari, H.; Lestari, A.P.; Rosada, R.A.; Santosa, S.P.; Purwanto, A. SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash. Appl. Sci. 2020, 10, 8428. https://doi.org/10.3390/app10238428
Jumari A, Yudha CS, Widiyandari H, Lestari AP, Rosada RA, Santosa SP, Purwanto A. SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash. Applied Sciences. 2020; 10(23):8428. https://doi.org/10.3390/app10238428
Chicago/Turabian StyleJumari, Arif, Cornelius Satria Yudha, Hendri Widiyandari, Annisa Puji Lestari, Rina Amelia Rosada, Sigit Puji Santosa, and Agus Purwanto. 2020. "SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash" Applied Sciences 10, no. 23: 8428. https://doi.org/10.3390/app10238428
APA StyleJumari, A., Yudha, C. S., Widiyandari, H., Lestari, A. P., Rosada, R. A., Santosa, S. P., & Purwanto, A. (2020). SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash. Applied Sciences, 10(23), 8428. https://doi.org/10.3390/app10238428