Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining
Abstract
:1. Introduction
2. Background
2.1. Technology Roadmap
2.2. Morphology Analysis
2.3. Theory of Inventive Problem Solving
2.4. Text Mining
3. Methodology
3.1. Basic Concepts and Overall Process
3.2. Components of an MA-Based TRM
3.3. Detailed Procedure
3.3.1. Phase 1: Data Collection and Pre-Processing
3.3.2. Phase 2: Keyword Extraction
3.3.3. Phase 3: Morphology Matrix Construction
3.3.4. Phase 4: MA-Based TRM for Existing Technologies and Products
3.3.5. Phase 5: MA-Based TRM for New Technologies and Products
4. Illustration: Technology Roadmapping in the Case of Underwater Vehicles
4.1. Phase 1: Data Collection and Pre-Processing
4.2. Phase 2: Keyword Extraction
4.3. Phase 3: Morphology Matrix Construction
4.4. Phase 4: MA-Based TRM for Existing Technologies and Products
4.5. Phase 5: MA-Based TRM for New Technologies and Products
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Cluster_ID | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
Word | flash automatic transmission processor solid window float fuel bulkhead polyurethane roller clamp directional impeller hover | acoustic gps usbl iridium ins | generator maneuve-rability chain fuse | cable | panel gyro | field intelligent concurrently | winch chassis usb foam conductor titanium pump fins | connector | bearing carbon arctic dock |
Cluster_ID | 11 | 12 | 13 | 15 | 17 | 18 | 19 | 20 | 21 |
Word | optical lbl antenna backscatter wifi | sonar | internal fiber lcd composite jet converter | oxygen | battery lbs motor pitch propeller | profiler multibeam detector projector | interface satellite modem aided beacons | recorder pinger radio stability compartment chemical | manipulator telemetry device mechanism |
Cluster_ID | 24 | 28 | 29 | 26 | 9 | 10 | |||
Word | laser beam magnetometer bracket flow | deck ethernet manual | access nuclear biological | brushless thruster | camera led light sensitivity | lithium housing umbilical pulse aluminum ballast copper |
Appendix B
Cluster_ID | 0 | 1 | 3 | 4 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Word | iridium adcp acoustics locator xenon impeller | sensor gps strobe telemetry laser altimeter transponder transmission antenna metal didson echosounder hipap polyurethane | sonar | skid crawler plastic beam winch minirov chassis wood polypropylene container nuclear ahrs polymer foam acrylic transmitter pvc conductor glass | ethernet transducer generator hydrophone body hydraulic buoy magnetometer receiver bandwidth micro usb wifi rdf bulkhead filter adds tracker | material | manipulator 8 console 8 joystick 8 motor 8 arm 8 lcd 8 waterproof 8 gyro 8 halogen 8 nylon 8 grp 8 lamp 8 |
Cluster_ID | 10 | 11 | 12 | 13 | |||
Word | cable battery lithium connector | steel energy fiber aluminium polyethylene copper titanium | speed bollard | camera video ccd |
Appendix C
Principle | Title | Description | Keywords |
---|---|---|---|
1 | Segmentation |
| divide, replace |
2 | Taking out |
| separate |
3 | Local quality |
| change, nonuniform |
4 | Asymmetry |
| change, asymmetrical |
5 | Merging |
| Assemble, merge |
6 | Universality |
| multiple, eliminate |
7 | Nested doll |
| inside, nest |
8 | Anti-weight |
| compensate, weight |
9 | Preliminary anti-action |
| anti-action, beforehand, replace |
10 | Preliminary action |
| prearrange, preliminary |
11 | Beforehand cushioning |
| beforehand, prepare |
12 | Equipotentiality |
| change |
13 | The other way around |
| invert, turn, movable |
14 | Spheroidality-Curvature |
| spherical, roller, ball, spiral, dome, rotary |
15 | Dynamics |
| change, movable, flexible |
16 | Partial or excessive actions |
| partial, excessive |
17 | Another dimension |
| tilt, move, dimensional, multistory |
18 | Mechanical vibration |
| oscillate, vibrate, frequency |
19 | Periodic action |
| periodic, impulse |
20 | Continuity of useful action |
| continuous, eliminate |
21 | Skipping |
| skip, fast |
22 | “Blessing in disguise”or”Turn Lemons into Lemonade” |
| turn, add |
23 | Feedback |
| feedback, introduce, change |
24 | Intermediary |
| intermediary, merge |
25 | Self-service |
| self-service, serve, recycle |
26 | Copying |
| copy |
27 | Cheap short-living objects |
| cheap, inexpensive |
28 | Mechanics substitution |
| replace, interact, optical, acoustic, taste, smell, electric, magnetic, electromagnetic |
29 | Pneumatics and hydraulics |
| gas, inflatable, liquid, replace |
30 | Flexible shells and thin films |
| flexible, thin |
31 | Porous materials |
| porous, pore, introduce |
32 | Color changes |
| change, color, transparency |
33 | Homogeneity |
| interact, same, identical |
34 | Discarding and recovering |
| discard, recover |
35 | Parameter changes |
| change, gas, liquid, solid, temperature, flexibility, concentration, consistency |
36 | Phase transitions |
| change, volume, heat |
37 | Thermal expansion |
| expand, thermal |
38 | Strong oxidants |
| replace, oxygen |
39 | Inert atmosphere |
| replace, add, neutral, inert |
40 | Composite materials |
| change, composite, material |
Appendix D
TRIZ Keywords | Frequency | Corresponding Principles | TRIZ Keywords | Frequency | Corresponding Principles |
---|---|---|---|---|---|
recover | 2445 | 34 Discarding and recovering | ball | 419 | 14 Spheroidality-Curvature |
move | 2043 | 17 Another dimension | turn | 411 | 13 The other way round; 22 “Blessing in disguise” or “Turn Lemons into Lemonade”; |
thin | 1444 | 30 Flexible shells and thin films | merge | 409 | 5 Merging; 24 Intermediary |
add | 1398 | 22 “Blessing in disguise” or “Turn Lemons into Lemonade”; 39 Inert atmosphere | inside | 358 | 7 Nested doll; |
acoustic | 1386 | 28 Mechanics substitution | separate | 338 | 2 Taking out |
electric | 1166 | 28 Mechanics substitution; | thermal | 337 | 37 Thermal expansion |
roller | 1076 | 14 Spheroidality-Curvature | optical | 320 | 28 Mechanics substitution |
gas | 937 | 29 Pneumatics and hydraulics; 35 Paramet-er changes | multiple | 313 | 6 Universality |
change | 930 | 23 Feedback; 32 Color changes; 35 Parameter changes; 36 Phase transitions; 40 Composite materials | partial | 309 | 16 Partial or excessive actions |
magnetic | 889 | 28 Mechanics substitution | Temperature | 308 | 35 Parameter changes |
movable | 537 | 13 The other way round; 15 Dynamics | fast | 236 | 21 Skipping |
material | 492 | 40 Composite materials | heat | 217 | 36 Phase transitions |
weight | 460 | 8 Anti-weight | flexible | 208 | 15 Dynamics; 30 Flexible shells and thin films |
volume | 448 | 36 Phase transitions | serve | 199 | 25 Self-service |
References
- Bortolini, M.; Faccio, M.; Gamberi, M.; Pilati, F. Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Comput. Ind. Eng. 2020, 139, 105485. [Google Scholar] [CrossRef]
- Jin, G.; Jeong, Y.; Yoon, B. Technology-driven roadmaps for identifying new product/market opportunities: Use of text mining and quality function deployment. Adv. Eng Inform. 2015, 29, 126–138. [Google Scholar] [CrossRef]
- Kovacs, R.; Oliveira, J.; Nazario, J.; Aguiar, G.; Paula, D. Modular deployment using TRM and function analysis. Technol. Forecast. Soc. Chang. 2015, 92, 1–11. [Google Scholar] [CrossRef]
- Yoon, B.; Phaal, R.; Probert, D. Morphology analysis for technology roadmapping: Application of text mining. R&D Manag. 2008, 38, 51–68. [Google Scholar] [CrossRef]
- Jeong, Y.; Yoon, B. Technovation development of patent roadmap based on technology roadmap by analyzing patterns of patent development. Technovation 2014, 1–16. [Google Scholar] [CrossRef]
- Feng, J.; Liu, B.; Liu, Z. Manufacturer’s Business Strategy: Interaction of Sharing Economy and Product Rollover. Complexity 2020, 3, 1–18. [Google Scholar] [CrossRef]
- Geum, Y.; Lee, H.J.; Lee, Y.; Park, Y. Development of data-driven technology roadmap considering dependency: An ARM-based technology roadmapping. Technol. Forecast. Soc. Chang. 2015, 91, 264–279. [Google Scholar] [CrossRef]
- Keil, M.; Lee, H.K.; Deng, T. Understanding the most critical skills for managing IT projects: A Delphi study of IT project managers. Inf. Manag. 2013, 50, 398–414. [Google Scholar] [CrossRef]
- Bloem, L.A.; Vasconcellos, E.; Vasconcellos, L.; Fernando, L.; Guedes, A.; Machado, R. Technology roadmapping: A methodological proposition to refine Delphi results. Technol. Forecast. Soc. Chang. 2017. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Guo, Y.; Zhu, D.; Porter, A.L. Four dimensional science and technology planning: A new approach based on bibliometrics and technology roadmapping. Technol. Forecast. Soc. Chang. 2014, 81, 39–48. [Google Scholar] [CrossRef]
- Moehrle, M.G. What is TRIZ? From conceptual basics to a framework for research. Creat. Innov. Manag. 2005, 14, 3–13. [Google Scholar] [CrossRef]
- Lee, C.; Song, B.; Cho, Y.; Park, Y. A Bayesian belief network approach to operationalization of multi-scenario technology roadmap. In Proceedings of the Portland International Conference on Management of Engineering and Technology (PICMET), Phuket, Thailand, 18–22 July 2010; pp. 371–376. [Google Scholar]
- Feng, L.; Niu, Y.; Liu, Z.; Wang, J.; Zhang, K. Discovering technology opportunity by keyword-based patent analysis: A hybrid approach of morphology analysis and USIT. Sustainability 2020, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Mishra, A.; Sinha, K.K. The development and application of a process model for R&D project management in a high tech firm: A field study. J. Oper. Manag. 2011, 29, 462–476. [Google Scholar] [CrossRef]
- Geum, Y.; Lee, S.; Park, Y. Combining technology roadmap and system dynamics simulation to support scenario-planning: A case of car-sharing service. Comput. Ind. Eng. 2014, 71, 37–49. [Google Scholar] [CrossRef]
- Stig, D.C. A proposed technology platform framework to support technology reuse. Procedia Comput. Sci. 2013, 16, 918–926. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.M.; Fleury, A.; Lopes, A.P. An overview of the literature on technology roadmapping (TRM): Contributions and trends. Technol. Forecast. Soc. Chang. 2013, 80, 1418–1437. [Google Scholar] [CrossRef]
- Simonse, L.W.L.; Hultink, E.J.; Buijs, J.A. Innovation roadmapping: Building concepts from practitioners’ insights. J. Prod. Innov. Manag. 2015, 32, 904–924. [Google Scholar] [CrossRef]
- Galvin, R. Roadmapping—A practitioner’s update. Technol. Forecast. Soc. Chang. 2004, 71, 101–103. [Google Scholar] [CrossRef]
- Kostoff, R.N.; Schaller, R.R. Science and technology roadmaps. IEEE Trans. Eng. Manag. 2001, 48, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Gerdsri, N.; Puengrusme, S.; Vatananan, R.; Tansurat, P. Conceptual framework to assess the impacts of changes on the status of a roadmap. J. Eng. Technol. Manag. 2019, 52, 16–31. [Google Scholar] [CrossRef]
- Shim, H.; Kim, T.; Choi, G. Technology roadmap for eco-friendly building materials industry. Energies 2019, 12, 804. [Google Scholar] [CrossRef] [Green Version]
- Castorena, D.G.; Rivera, G.R.; González, A.V. Technological foresight model for the identification of business opportunities (TEFMIBO). Foresight 2013, 15, 492–516. [Google Scholar] [CrossRef]
- Azzi, A.; Battini, D.; Faccio, M.; Persona, A.; Sgarbossa, F. Inventory holding costs measurement: A multi-case study. Int. J. Logist. Manag. 2014, 25, 109–132. [Google Scholar] [CrossRef]
- Saritas, O.; Aylen, J. Using scenarios for roadmapping: The case of clean production. Technol. Forecast. Soc. Chang. 2010, 77, 1061–1075. [Google Scholar] [CrossRef]
- Strauss, J.D.; Radnor, M. Roadmapping for dynamic and uncertain environments. Res. Technol. Manag. 2004, 47, 51–57. [Google Scholar] [CrossRef]
- Hussain, M.; Tapinos, E.; Knight, L. Scenario-driven roadmapping for technology foresight. Technol. Forecast. Soc. Chang. 2017, 124, 160–177. [Google Scholar] [CrossRef]
- Li, C.F.; Sun, T.T. Research on technology roadmaps of the wind power industry based on bibliometrics and AHP method—A case study of wind blade. Adv. Mater. Res. 2014, 1044–1045, 397–400. [Google Scholar] [CrossRef]
- Lee, S.K.; Mogi, G.; Hui, K.S. A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices. Renew. Sustain. Energy Rev. 2013, 21, 347–355. [Google Scholar] [CrossRef]
- Daim, T.U.; Yoon, B.S.; Lindenberg, J.; Grizzi, R.; Estep, J.; Oliver, T. Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment. Technol. Forecast. Soc. Chang. 2018, 131, 49–66. [Google Scholar] [CrossRef]
- Wissema, J.G. Morphological analysis: Its application investigation to a company TF. Futures 1976, 8, 146–153. [Google Scholar] [CrossRef]
- Noh, H.; Song, Y.K.; Lee, S. Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations. Telecomm. Policy 2016, 40, 956–970. [Google Scholar] [CrossRef]
- Yoon, J.; Park, H.; Seo, W.; Lee, J.-M.; Coh, B.-y.; Kim, J. Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework. Technol. Forecast. Soc. Chang. 2015, 100, 153–167. [Google Scholar] [CrossRef]
- Im, K.; Cho, H. A systematic approach for developing a new business model using morphological analysis and integrated fuzzy approach. Expert Syst. Appl. 2013, 40, 4463–4477. [Google Scholar] [CrossRef]
- Geum, Y.; Jeon, H.; Lee, H. Developing new smart services using integrated morphological analysis: Integration of the market-pull and technology-push approach. Serv. Bus. 2016, 10, 531–555. [Google Scholar] [CrossRef]
- Yoon, B.; Park, I.; Coh, B. Technological forecasting & social change exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technol. Forecast. Soc. Chang. 2013. [Google Scholar] [CrossRef]
- Chang, H.T.; Chen, J.L. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Adv. Eng. Softw. 2004, 35, 553–566. [Google Scholar] [CrossRef]
- Fiorineschi, L.; Frillici, F.S.; Rotini, F.; Tomassini, M. Exploiting TRIZ Tools for enhancing systematic conceptual design activities. J. Eng. Des. 2018, 29, 259–290. [Google Scholar] [CrossRef]
- Azammi, A.M.N.; Sapuan, S.M.; Ishak, M.R.; Sultan, M.T.H. Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique. Def. Technol. 2018, 14, 268–277. [Google Scholar] [CrossRef]
- Hmina, K.; Sallaou, M.; Arbaoui, A.; Lasri, L. A preliminary design innovation aid methodology based on energy analysis and TRIZ tools exploitation. Int. J. Interact. Des. Manuf. 2018, 12, 919–928. [Google Scholar] [CrossRef]
- Wan, H.; Rieckmann, J.M.; Zhang, Q.; Ping, Q. Research on new energy automobile manufacturing service derivatization based on TRIZ. Sustainability 2020, 12, 6652. [Google Scholar] [CrossRef]
- Cahyono, E.A.B.; Artanto, D.; Arbiyanti, P.; Heliarko, G. Development of TRIZ based competency test material and its influence on improving problem solving skills. J. Phys. Conf. Ser. 2020, 1516. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, C.H.; Li, F.; Shie, A.J. Customized and knowledge-centric service design model integrating case-based reasoning and TRIZ. Expert Syst. Appl. 2020, 143, 113062. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Ishak, M.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, morphological chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932. [Google Scholar] [CrossRef]
- Boavida, R.; Navas, H.; Godina, R.; Carvalho, H.; Hasegawa, H. A combined use of TRIZ methodology and eco-compass tool as a sustainable innovation model. Appl. Sci. 2020, 10, 3535. [Google Scholar] [CrossRef]
- Nakagawa, T. Education and training of creative problem solving thinking with TRIZ/USIT. Procedia Eng. 2011, 9, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Cavallucci, D.; Rousselot, F.; Zanni, C. An ontology for TRIZ. Procedia Eng. 2011, 9, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Fiorineschi, L.; Frillici, F.S.; Rissone, P. A comparison of classical TRIZ and OTSM-TRIZ in dealing with complex problems. Procedia Eng. 2015, 131, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Filippi, S.; Barattin, D. Exploiting TRIZ tools in interaction design. Procedia Eng. 2015, 131, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Ilevbare, I.M.; Probert, D.; Phaal, R. A review of TRIZ, and its benefits and challenges in practice. Technovation 2013, 33, 30–37. [Google Scholar] [CrossRef]
- Maimon, O.Z.; Horowitz, R. Sufficient conditions for inventive solutions. IEEE Trans. Syst. Man. Cybern. Part. C Appl. Rev. 1999, 29, 349–361. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kosha, H.; Mihara, Y. Reorganizing TRIZ solution generation methods into simple five in USIT. In Proceedings of the ETRIA World Conference, TRIZ Future 2002, Strasbourg, France, 6–8 November 2002; pp. 333–345. [Google Scholar]
- Tan, R. TRIZ, The Development And Dissemination In Industries In China. In Proceedings of the TRIZCON 2017, Atlantic City, NJ, USA, 3–5 October 2017; pp. 3–5. [Google Scholar]
- Losiewicz, P.; Oard, D.W.; Kostoff, R.N. Textual data mining to support science and technology management. J. Intell. Inf. Syst. 2000, 15, 99–119. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, J.; Wang, J. Resource-Constrained innovation method for sustainability: Application of morphological analysis and TRIZ inventive principles. Sustainability 2020, 12, 917. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yoon, B.; Park, Y. An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation 2009, 29, 481–497. [Google Scholar] [CrossRef]
- Yoon, B.; Park, Y. A text-mining-based patent network: Analytical tool for high-technology trend. J. High Technol. Manag. Res. 2004, 15, 37–50. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Lin, C.J.; Lin, Y.I. Text mining techniques for patent analysis. Inf. Process. Manag. 2007, 43, 1216–1247. [Google Scholar] [CrossRef]
- Mun, C.; Yoon, S.; Park, H. Structural decomposition of technological domain using patent co-classification and classification hierarchy. Scientometrics 2019. [Google Scholar] [CrossRef]
- Aaldering, L.J.; Leker, J.; Song, C.H. Competition or collaboration?—Analysis of technological knowledge ecosystem within the field of alternative powertrain systems: A patent-based approach. J. Clean Prod. 2019, 212, 362–371. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C. Novelty-focused weak signal detection in futuristic data: Assessing the rarity and paradigm unrelatedness of signals. Technol. Forecast. Soc. Chang. 2017, 120, 59–76. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, Y.S. Patent keyword network analysis for improving technology development efficiency. Technol. Forecast. Soc. Chang. 2014, 83, 170–182. [Google Scholar] [CrossRef]
- Yoon, B.; Magee, C.L. Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction. Technol. Forecast. Soc. Chang. 2018, 1–13. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, K.; Yoon, B.; Phaal, R. Development of a patent roadmap through the Generative Topographic Mapping and Bass diffusion model. J. Eng. Technol. Manag. 2015, 38, 53–70. [Google Scholar] [CrossRef]
- Lee, C.H.; Wang, S.H. An information fusion approach to integrate image annotation and text mining methods for geographic knowledge discovery. Expert Syst. Appl. 2012, 39, 8954–8967. [Google Scholar] [CrossRef]
- Guerrero, J.I.; León, C.; Monedero, I.; Biscarri, F.; Biscarri, J. Improving knowledge-based systems with statistical techniques, text mining, and neural networks for non-technical loss detection. Knowl. Based Syst. 2014, 71, 376–388. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, Y.; Liu, B. Text mining for traditional Chinese medical knowledge discovery: A survey. J. Biomed. Inform. 2010, 43, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, G.; Chen, H.; Porter, A.L.; Zhu, D.; Lu, J. Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technol. Forecast. Soc. Chang. 2016, 105, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.; Park, Y. Development of new technology forecasting algorithm: Hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Trans. Eng. Manag. 2007, 54, 588–599. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Pan, S.; Han, Y. Segmentation of crop disease images with an improved k-means clustering algorithm. Appl. Eng. Agric. 2018, 34, 277–289. [Google Scholar] [CrossRef]
- Kumar, Y.; Sahoo, G. A new initialization method to originate initial cluster centers for k-means algorithm. Int. J. Adv. Sci. Technol. 2014, 62, 43–54. [Google Scholar] [CrossRef]
- Son, C.; Suh, Y.; Jeon, J.; Park, Y. Development of a GTM-based patent map for identifying patent vacuums. Expert Syst. Appl. 2012, 39, 2489–2500. [Google Scholar] [CrossRef]
- Kaneko, H. Sparse generative topographic mapping for both data visualization and clustering. J. Chem. Inf. Model. 2018, 58, 2528–2535. [Google Scholar] [CrossRef]
- Boon, B.; Park, Y. A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technol. Forecast. Soc. Chang. 2005, 72, 145–160. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Seol, H.; Park, Y. Using patent information for designing new product and technology: Keyword based technology roadmapping. R&D Manag. 2008, 38, 169–188. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and K-Means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Yoerger, D.R.; Jakuba, M.; Bradley, A.M.; Bingham, B. Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Springer Tracts Adv. Robot. 2007, 28, 416–429. [Google Scholar] [CrossRef]
- Lee, H.; Geum, Y. Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP. Technol. Forecast. Soc. Chang. 2017, 117, 12–24. [Google Scholar] [CrossRef]
- Hansen, C.; Daim, T.; Ernst, H.; Herstatt, C. The future of rail automation: A scenario-based technology roadmap for the rail automation market. Technol. Forecast. Soc. Chang. 2016, 110, 196–212. [Google Scholar] [CrossRef]
- Moehrle, M. TRIZ-based technology roadmapping. Int. J. Technol. Intell. Plan. 2004, 1, 87–99. [Google Scholar] [CrossRef]
- Yan, H.-B.; Ma, T.; Sriboonchitta, S.; Huynh, V.-N. A stochastic dominance based approach to consumer-oriented Kansei evaluation with multiple priorities. Ann. Oper. Res. 2017, 256, 329–357. [Google Scholar] [CrossRef]
- Kucharavy, D.; De Guio, R. Logistic substitution model and technological forecasting. Procedia Eng. 2011, 9, 402–416. [Google Scholar] [CrossRef] [Green Version]
TF-IDF Matrix: (k, m + n) | Patent 1 | Patent n | Product 1 | Product m |
---|---|---|---|---|
Keyword 1 | 0.022 | 0.15 | 0.059 | 0.214 |
Keyword 2 | 0 | 0.247 | 0.48 | 0.59 |
Keyword k | 0.169 | 0.01 | 0.159 | 0 |
Cluster_ID | 0 | 1 | 10 | 11 | 13 | 17 |
---|---|---|---|---|---|---|
Keywords | flash automatic transmission processor solid window float fuel bulkhead polyurethane roller clamp directional impeller hover | Acoustic gps usbl iridium ins | Lithium housing umbilical pulse aluminum ballast copper | Optical lbl antenna backscatter wifi | Internal fiber lcd composite jet converter | Battery lbs motor pitch propeller |
Topic | Mechanical arm Motion form Buoyancy material | Omnirange | Equipment carrying system | Underwater localization | Buoyancy material, hull | Energy source, propeller |
Cluster_ID | 1 | 4 | 6 | 8 | 10 | 11 |
---|---|---|---|---|---|---|
Keywords | sensor gps strobe telemetry laser altimeter transponder transmission antenna metal didson echosounder hipap polyurethane | skid crawler plastic beam winch minirov chassis wood polypropylene container nuclear ahrs polymer foam acrylic transmitter pvc conductor glass | ethernet transducer generator hydrophone body hydraulic buoy magnetometer receiver bandwidth micro usb wifi rdf bulkhead filter adds tracker | manipulator console joystick motor arm lcd waterproof gyro halogen nylon grp lamp | cable battery lithium connector | steel energy fiber aluminium polyethylene copper titanium |
Topic | Sensor | Winch, buoyancy material, hull | Emergency localization, hull | Mechanical arm | Battery | Hull, transmission media |
Dimension | Shape | Keywords |
---|---|---|
Mechanism dimension (Technology layer) | Communication system | Cable, waveguide, coils, radio, acoustic, satellite |
Equipment carrying system | Winch, bracket, umbilical cable, cable, coils, transmission, ballast, appendages, manual, cage | |
Camera | Camera, sensor, beam, interface, high sensitivity, converter, solid, low light, field | |
Underwater localization | Sonar, detector, sensor, antenna, laser, pinger, lbs, beam, multibeam, telemetry, satellite, iridium | |
Omnirange | Gyroscope, ins, sensor, lbl, usbl, gps, magnetometer, fpga, satellite, iridium | |
Connection type | Chain, weld, flexible, detachable | |
Structure dimension (Product layer) | Winch | Bracket, skid, motor, chassis, roller, cable |
Mechanical arm | Arm, chassis, joystick, telemetry, manipulator, clamp, hydraulic, motor | |
Sensor | Piezoelectric, biological, chemical, flow, liquid | |
Battery | Electrolyte, lithium, acid, nuclear, Ni-MH, snorkeling | |
Shape | Biological, missile, fish, pinion, aerodynamic, conical, spherical, cylindrical | |
Emergency localization | Tracker, strobe, rdf, hipap, transponder, gps, iridium | |
Material dimension (Technology + Product layer) | Buoyancy material | Foam, pvc, polyurethane, plastic, wood, polypropylene, polyethylene, nylon, fibre, pvdf |
Transmission media | Copper, fiberglass, optical fiber, semiconductor laser, led, cable, | |
Body | Polymer, epoxy, fiber, carbon, composite, polypropylene, aluminum alloy, grp steel, titanium | |
Energy dimension (Technology + Product layer) | Energy source | Ship, battery, fuel, nuclear, generator, accumulator, hybrid electricity |
Thruster | Hydraulic, main pump, auxiliary pump, duct, brushless DC thruster | |
Motion form | Concentric, collinear, column, pivot, curve, directional, bidirectional, hover | |
Propeller | Electricity, hydraulic, reverse |
Technology | Description Based on Morphology Analysis |
---|---|
T1 | Sensor—Sonar—Omnirange system—Propeller—Capture arm—Conical body—Cylindrical Body |
T2 | Optical cable—Weld—Flexible connection—GPS—Capture arm—Winch—Ellipsoid body—Foam |
T3 | Fuel cell—Hydrocarbon—Optical cable—Acoustic detector—Turbine—Mechanical arm—Elongated hull—Tether control system—Propeller—Buoyancy system |
T4 | Radio communication—Cable—Acoustic localization—Propeller motor drive—Synthetic aperture sonar system—Mother ship power supply—Buoyancy components |
T5 | Horn shaped reconfigurable hull—Camera—Anti sonar detection—USBL—Sensor—Spherical angle—INS—Cable—Capture arm—Propulsion device—Sonar—Scintillation material—Composite—Phase change material |
T6 | Fuel cell—Propulsion system—Recycling cable—Clamping arm—Acoustic device—Integrated scintillation material—Artificial intelligence algorithm—Conical shell—Navigation system—Beam weapon—Sensor—Pump jet |
T7 | Optical cable—Winch—Localization—Sensor—Motor—Buoyancy material—Non-physical connection—Transmission medium—3D imaging sonar—INS—Mechanical connection—3-axis motion |
T8 | Chain connection—Braking device—Elongated hull—Mechanical arm—Sensor—Buoyancy system—Air and underwater vehicle—Carbon fiber |
T9 | Ultrasonic generator—Mechanical connection—Turbine engine—Camera—Battery—Pulse power hybrid electric propulsion—Buoyancy system—Ejector—Cable rope—Power source—Cylindrical shell—Capture arm—Flexible shell—Elliptical shell—Sensor—Gyro—Equipment bearing—Acoustic navigation—Winch—Wireless guidance |
T10 | Longitudinal axis shell wing—Propulsion system—Battery—Magnetic circuit launcher—Buoyancy material—Acoustic device—Hinge connection—Resistance fin—Wheel frame—Depth camera—Sensor—Propeller—Acoustic positioning system and GPS hybrid system—Phase change material—Pump—Energy harvester |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 1 | |||||||||
T2 | 0.150 | 1 | ||||||||
T3 | 0.280 | 0.226 | 1 | |||||||
T4 | 0.356 | 0.254 | 0.211 | 1 | ||||||
T5 | 0.339 | 0.143 | 0.381 | 0.348 | 1 | |||||
T6 | 0.528 | 0.199 | 0.234 | 0.383 | 0.436 | 1 | ||||
T7 | 0.468 | 0.174 | 0.299 | 0.383 | 0.368 | 0.446 | 1 | |||
T8 | 0.512 | 0.131 | 0.281 | 0.338 | 0.345 | 0.425 | 0.457 | 1 | ||
T9 | 0.406 | 0.195 | 0.247 | 0.324 | 0.282 | 0.350 | 0.440 | 0.353 | 1 | |
T10 | 0.371 | 0.096 | 0.198 | 0.196 | 0.245 | 0.355 | 0.313 | 0.268 | 0.33 | 1 |
Category | Products | Description Based on Morphology Analysis |
---|---|---|
AUV | GAVIA | Battery: lithium-ion—Communication: iridium, acoustic modem, wireless LAN—Navigation: GNSS, DGPS, DVL, LBL, USBL—Sensor: swath bathymetry module, teledyne blueview microbathymetry and gapfill, side-scan sonar, telydyne benthos sub-bottom profiler (SBP), environmental sensor—Shape: cylindrical |
SEAGLIDER | Sensor: pressure sensor, turbulence sensor—Pump: vacuum pump—Shape: wings, fish—Localization: GPS, iridium communication | |
HUGIN | Sonar: side-scan sonar, synthetic aperture sonar, multibeam echo sounder, fishery sonar, laser plankton counter—Battery: lithium polymer battery, aluminum oxygen semi-fuel cell—Winch: L/R system winch—Shape: torpedo, cylindrical—Equipment carrying system: stinger ramp system | |
MUNIN | Echo sounder: tailored EM 2040 multibeam—Battery: Li-ion—Sensor: paroscientific digiquartz depth sensor—Localization and communication: HiPAP acoustic positioning and communications, Iridium, wifi, cNODE acoustic command and data link—Navigation: multibeam echosounder and side-scan sonar—Shape: cylindrical | |
REMUS | Navigation: LBL, GPS, INS, acoustic, WAAS, Iridium—Battery: Li-ion battery—Sonar: bathymetric side-scan sonar, gap-filler sonar—Shape: cylindrical—Localization: acoustic transponder, acoustic modem, iridium modem—Communication: acoustic modem, iridium, WiFi, Ethernet—Propulsion: DC brushless motor | |
ROV | LBV | Motion form: 4-axis maneuverability—Camera: high-intensity LED tracking camera, HD and zoom camera—Motor: brushless DC thruster—Equipment carrying system: reel optional, integrated tether reel with slip ring, optional wheeled crawler skid assembly with patented vortex generator—Sonar: flexible platform, imaging, scanning, profiling — Arm: three jaw—Shape: box |
REMOTEFLYER | Sonar: Didson sonar system—Movement: 4-axis translation—Motor: brushless DC motor—Propeller: stainless steel—Nozzle: nylon Kort nozzle—Camera: High-resolution color video, high-flotation jacket over Kevlar braid—Sensor: depth, heading | |
MINIROVER | Sensor: heading and depth, pitch/roll—Camera: high-resolution zoom color camera and low light-level B&W—Body material: ultra-high molecular weight polyethylene—Thruster: magnetically coupled DC brushless thruster | |
H-ROV | Material: stainless steel, GRP—Arm: 5-axis electric, 7-axis electric—Camera: multiple PTZ video camera—Navigation: horizontal and vertical DVL—Sonar: SSS, MBES | |
SEAROVER | Camera: high-resolution color camera, ultra-low-light B&W camera, 180° tilt camera NTSC/PAL—Motion form: 3-axis translation—Propeller: Stainless steel—Nozzle: nylon Kort nozzle—Tether: dual coax—Thruster: magnetically coupled brushless thruster |
Products | GAVIA | H-ROV | HUGIN | LBV | MINIROVER | MUNIN | REMOTEFLYER | REMUS | SEAGLIDER | SEAROVER |
---|---|---|---|---|---|---|---|---|---|---|
GAVIA | 1 | 0.264 | 0.717 | 0.141 | 0.144 | 0.650 | 0.209 | 0.354 | 0.253 | 0.184 |
H-ROV | 1 | 0.215 | 0.078 | 0.129 | 0.211 | 0.105 | 0.075 | 0.029 | 0.069 | |
HUGIN | 1 | 0.091 | 0.065 | 0.735 | 0.139 | 0.437 | 0.367 | 0.166 | ||
LBV | 1 | 0.431 | 0.095 | 0.359 | 0.205 | 0.103 | 0.332 | |||
MINIROVER | 1 | 0.069 | 0.563 | 0.155 | 0.006 | 0.627 | ||||
MUNIN | 1 | 0.130 | 0.471 | 0.417 | 0.192 | |||||
REMOTEFLYER | 1 | 0.207 | 0.185 | 0.634 | ||||||
REMUS | 1 | 0.670 | 0.410 | |||||||
SEAGLIDER | 1 | 0.346 | ||||||||
SEAROVER | 1 |
GAV | HUG | LBV | MINI | MUN | REMO | REMU | SEAG | SEAR | |
---|---|---|---|---|---|---|---|---|---|
T1 | 0.0674 | 0.0879 | 0.0389 | 0.0229 | 0.1102 | 0.054 | 0.1693 | 0.1502 | 0.085 |
T3 | 0.0755 | 0.1151 | 0.0201 | 0.0258 | 0.0909 | 0.0376 | 0.089 | 0.0882 | 0.0366 |
T4 | 0.0891 | 0.0744 | 0.0376 | 0.0502 | 0.0632 | 0.1301 | 0.0661 | 0.0786 | 0.0721 |
T5 | 0.1023 | 0.0966 | 0.0862 | 0.0776 | 0.0844 | 0.1521 | 0.1033 | 0.0907 | 0.1281 |
T6 | 0.0838 | 0.1009 | 0.0385 | 0.0185 | 0.0926 | 0.1025 | 0.1445 | 0.1458 | 0.1146 |
T7 | 0.1278 | 0.1444 | 0.0382 | 0.047 | 0.1119 | 0.0624 | 0.1375 | 0.1418 | 0.067 |
T8 | 0.0952 | 0.1064 | 0.0323 | 0.0482 | 0.0918 | 0.0724 | 0.1147 | 0.1156 | 0.0557 |
T9 | 0.0782 | 0.092 | 0.0385 | 0.1041 | 0.0782 | 0.1013 | 0.0894 | 0.1118 | 0.0573 |
T10 | 0.0574 | 0.0826 | 0.0369 | 0.0495 | 0.0765 | 0.0772 | 0.0587 | 0.0749 | 0.0838 |
Keyword | Count | Corresponding Principles |
---|---|---|
recover | 2445 | 34 Discarding and recovering |
move | 2043 | 17 Another dimension |
thin | 1444 | 30 Flexible shells and thin films |
add | 1398 | 22 “Blessing in disguise” or “Turn lemons into lemonade”; 39 Inert atmosphere |
acoustic | 1386 | 28 Mechanical substitution |
New Opportunities | Innovation Sources in Sparse Area | TRIZ Inventive Principles (Improved) | Description of New Opportunities |
---|---|---|---|
N1 | Titanium, composite (technology), Steel, titanium (product) | 28. Mechanics substitution | The total amount of titanium metal is large. And its strength is strong with the strong ability to resist acid and alkali corrosion. It will not be corroded when immersed in seawater before 5 years. The underwater vehicle made of titanium alloy can dive to a depth of several kilometers. Moreover, the cost is not high. |
N2 | Pump, generator (technology) | 14. Spheroidality -Curvature, 15. dynamics, 25. self-service, 30. flexible shells and thin films, intelligentization (improved) | First, the use of intelligent driving materials can effectively improve the propulsion speed and propulsion efficiency of the underwater vehicles, not only making the structure of the vehicles more simplified and compact, but also improving the concealment of the vehicle’s underwater movement, which can realize silent movement. Second, the driving mode with no machinery joints can better realize the continuous and flexible movement of the vehicle. |
N3 | Battery, lithium (technology) Battery, lithium (product) | 35. Parameter changes | The positive electrode of the lithium battery using a full gradient composite material can improve the cycle performance. The negative electrode using nanometer materials has the advantage of excellent reversible cycle capacity. The battery form should develop from solid to semisolid, which can improve safety performance. |
N4 | Telemetry, detector (technology) Telemetry (product) | Intelligentization (improved) | Technology based on artificial intelligence algorithms and machine learning to plan paths can effectively optimize the safety and flexibility of underwater vehicles. |
N5 | Camera (technology) Camera (product) | 17. Another dimension | The 360-degree surround view virtual reality (VR) technology of the camera allows researchers to have a better view when exploring the seabed. |
N6 | Propeller, duct (technology) Hydraulic (product) | 5. Merging | The use of two or more hybrid propulsion methods including propellers, hydraulics, water jets, magnetic fluids, bionics, and crawlers can make the motion of underwater vehicle more flexible and stable. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Niu, Y.; Wang, J. Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining. Appl. Sci. 2020, 10, 8498. https://doi.org/10.3390/app10238498
Feng L, Niu Y, Wang J. Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining. Applied Sciences. 2020; 10(23):8498. https://doi.org/10.3390/app10238498
Chicago/Turabian StyleFeng, Lijie, Yuxiang Niu, and Jinfeng Wang. 2020. "Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining" Applied Sciences 10, no. 23: 8498. https://doi.org/10.3390/app10238498
APA StyleFeng, L., Niu, Y., & Wang, J. (2020). Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining. Applied Sciences, 10(23), 8498. https://doi.org/10.3390/app10238498