Lean Manual Assembly 4.0: A Systematic Review
Abstract
:1. Introduction
- What are the characteristics and implications of mass customization for assembly operations?
- What new Industry 4.0 digital technologies are relevant to assembly operations?How to make the most out of their potential, and how to measure the improvement?
- Is Lean production the best starting ground for implementing Industry 4.0 assembly operations?
- How would Industry 4.0 affect people in assembly?How to support people transitioning to Assembly 4.0?
2. Materials and Methods
3. Results
3.1. Assembly Operations for Mass Customisation
3.1.1. Introducing Assembly Operations for Mass Customisation
3.1.2. Modularity and Product Clustering
3.1.3. Mixed-Model Assembly Optimisation
3.1.4. Customer Involvement and Postponement Strategies
3.1.5. The Implications of Complexity
3.1.6. Mass Customisation Impacts Operators
3.1.7. Assembly and Mass Customisation: Conclusions
3.2. New Digital Technology Available: Industry 4.0
3.2.1. Introducing “Assembly 4.0”
3.2.2. Industry 4.0 Technologies for Improving Processes and Decisions
3.2.3. Industry 4.0 Technologies for Gathering Information on Human Operators
3.2.4. Industry 4.0 Technologies for Supporting People in Assembly
3.2.5. Industry 4.0 Technologies for Mass Customisation
3.2.6. Key Performance Indicators for Assembly
3.2.7. Key Performance Indicators for Industry 4.0
3.2.8. Small and Medium Enterprises in the Industry 4.0 Era
3.2.9. Assembly 4.0: Conclusions
3.3. Focusing on Delivering Value: Lean
3.3.1. Introducing Lean in the Era of Industry 4.0
3.3.2. Lean Production Tools for Assembly Operations
3.3.3. Internal Logistics
3.3.4. Ergonomics
3.3.5. Assembly Operations Layout
3.3.6. Teaching Lean for Assembly Operations: Learning Factories
3.3.7. Evaluating Performance From a Lean Perspective
3.3.8. The Interaction between Lean Production and Industry 4.0
3.3.9. Lean Tools for the Industry 4.0 Era
3.3.10. Lean Management Affected by the 4th Industrial Revolution
3.3.11. Lean and Industry 4.0: Conclusions
3.4. Focusing on People
3.4.1. Introducing People in Assembly Operations
3.4.2. Line Balancing, Sequencing and Job Rotation
3.4.3. Automation and Human-Robot Collaboration
3.4.4. Lean: Operators at the Centre
3.4.5. Frameworks for Operators in Industry 4.0
3.4.6. Supporting Operators with Industry 4.0 Technologies
3.4.7. Implications of Smart Factories for Human Operators
3.4.8. Focusing on People: Conclusions
4. Discussion
4.1. Assembly & Mass Customisation
4.2. Industry 4.0 & Key Performance Indicators
4.3. Lean Assembly for Industry 4.0
4.4. Assembly Operators in Industry 4.0
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, S.J. Evolving paradigms of manufacturing: From mass production to mass customization and personalization. Procedia CIRP 2013, 7, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.J.; Ko, J.; Weyand, L.; Elmaraghy, H.A.; Lien, T.K.; Koren, Y.; Bley, H.; Chryssolouris, G.; Nasr, N.; Shpitalni, M. Assembly system design and operations for product variety. CIRP Ann. Manuf. Technol. 2011, 60, 715–733. [Google Scholar] [CrossRef]
- Womack, J.P.; Jones, D.T.; Roos, D. The Machine that Changed the World; Macmillan Publishing Company: New York, NY, USA, 1990; ISBN 0-89256-350-8. [Google Scholar]
- Romero, D.; Gaiardelli, P.; Powell, D.; Wuest, T.; Thürer, M. Rethinking jidoka systems under automation & learning perspectives in the digital lean manufacturing world. IFAC-PapersOnLine 2019, 52, 899–903. [Google Scholar] [CrossRef]
- Nolting, L.; Priesmann, J.; Kockel, C.; Rödler, G.; Brauweiler, T.; Hauer, I.; Robinius, M.; Praktiknjo, A. Generating transparency in the worldwide use of the terminology industry 4.0. Appl. Sci. 2019, 9, 4659. [Google Scholar] [CrossRef] [Green Version]
- Rüβmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries; The Boston Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- Cohen, Y.; Naseraldin, H.; Chaudhuri, A.; Pilati, F. Assembly systems in Industry 4.0 era: A road map to understand Assembly 4.0. Int. J. Adv. Manuf. Technol. 2019, 105, 4037–4054. [Google Scholar] [CrossRef]
- Wagner, T.; Herrmann, C.; Thiede, S. Industry 4.0 impacts on Lean production systems. Procedia CIRP 2017, 63, 125–131. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0-A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, 1–28. [Google Scholar] [CrossRef]
- Yin, Y.; Stecke, K.E.; Li, D. The evolution of production systems from Industry 2.0 through Industry 4.0. Int. J. Prod. Res. 2018, 56, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Yuan, M.; Cheng, S. Key Technologies of Reconfigurable Assembly Line For Mass Customization. In Proceedings of the 3rd International Conference on Mechanical Engineering and Intelligent Systems (ICMEIS 2015), Yinchuan, China, 15–16 August 2015; Volume 26, pp. 212–217. [Google Scholar]
- Michalos, G.; Makris, S.; Papakostas, N.; Mourtzis, D.; Chryssolouris, G. Automotive assembly technologies review: Challenges and outlook for a flexible and adaptive approach. CIRP J. Manuf. Sci. Technol. 2010, 2, 81–91. [Google Scholar] [CrossRef]
- Agard, B.; Bassetto, S. Modular design of product families for quality and cost. Int. J. Prod. Res. 2013, 51, 1648–1667. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Jiao, R.J. Variety-Driven Assembly System Layout Design by Design Structure Matrix Clustering Analysis. Procedia CIRP 2017, 63, 295–300. [Google Scholar] [CrossRef]
- Hanafy, M.; ElMaraghy, H. Modular product platform configuration and co-planning of assembly lines using assembly and disassembly. J. Manuf. Syst. 2017, 42, 289–305. [Google Scholar] [CrossRef]
- Ren, W.; Wen, J.; Guan, Y.; Hu, Y. Research on assembly module partition for flexible production in mass customization. In Proceedings of the 51st Cirp Conference on Manufacturing Systems, Stockholm, Sweden, 16–18 May 2018; Volume 72, pp. 744–749. [Google Scholar]
- Anzanello, M.J.; Fogliatto, F.S. Selecting the best clustering variables for grouping mass-customized products involving workers’ learning. Int. J. Prod. Econ. 2011, 130, 268–276. [Google Scholar] [CrossRef]
- Michniewicz, J.; Reinhart, G.; Boschert, S. CAD-based automated assembly planning for variable products in modular production systems. In Proceedings of the 6th CIRP Conference on Assembly Technologies and Systems (CATS), Gothenburg, Sweden, 16–18 May 2016; Volume 44, pp. 44–49. [Google Scholar]
- Jiang, Z.; Li, L.; Li, Z.Z.; Li, Z.Z. Order-oriented cooperative sequencing optimisation in multi-mix-model assembly lines. Int. J. Prod. Res. 2012, 50, 7198–7209. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Z. Mixed-model assembly line sequencing optimization based on workstation overload analysis. In Proceedings of the Asme 8th International Manufacturing Science and Engineering Conference, Madison, WI, USA, 10–14 June 2013. [Google Scholar]
- Banjo, O.; Stewart, D.; Fasli, M. Optimising Mixed Model Assembly Lines for Mass Customisation: A Multi Agent Systems Approach; Advances in Manufacturing Technology XXX; Goh, Y.M., Case, K., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; Volume 3, pp. 337–342. [Google Scholar]
- Zeltzer, L.; Aghezzaf, E.H.; Limère, V. Workload balancing and manufacturing complexity levelling in mixed-model assembly lines. Int. J. Prod. Res. 2017, 55, 2829–2844. [Google Scholar] [CrossRef]
- Rossit, D.; Tohme, F.; Frutos, M. An Industry 4.0 approach to assembly line resequencing. Int. J. Adv. Manuf. Technol. 2019, 105, 3619–3630. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Wang, Y. Optimization of Scheduling for Small Batch and Customized Mixed-model Assembly Production. In Proceedings of the 3rd Annual 2017 International Conference on Management Science and Engineering (MSE 2017), Guilin, China, 18–20 August 2017; Volume 50, pp. 83–89. [Google Scholar]
- Mourtzis, D.; Doukas, M. A Web-based Platform for Customer Integration in the Decentralised Manufacturing of Personalised Products. In Proceedings of the 45th Cirp Conference on Manufacturing Systems 2012, Athens, Greece, 16–18 May 2012; Volume 3, pp. 209–214. [Google Scholar]
- Tan, C.; Hu, S.J.; Chung, H.; Barton, K.; Piya, C.; Ramani, K.; Banu, M. Product personalization enabled by assembly architecture and Cyber Physical Systems. CIRP Ann. Technol. 2017, 66, 33–36. [Google Scholar] [CrossRef]
- Guericke, S.; Koberstein, A.; Schwartz, F.; Voss, S. A stochastic model for the implementation of postponement strategies in global distribution networks. Decis. Support Syst. 2012, 53, 294–305. [Google Scholar] [CrossRef]
- AlGeddawy, T.; ElMaraghy, H. Assembly systems layout design model for delayed products differentiation. Int. J. Prod. Res. 2010, 48, 5281–5305. [Google Scholar] [CrossRef]
- Hanafy, M.; ElMaraghy, H. Developing assembly line layout for delayed product differentiation using phylogenetic networks. Int. J. Prod. Res. 2015, 53, 2633–2651. [Google Scholar] [CrossRef]
- Padayachee, J.; Bright, G.; Padaychee, J.; Bright, J. The design of reconfigurable assembly stations for high variety and mass customisation manufacturing. S. Afr. J. Ind. Eng. 2013, 24, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Modrak, V.; Marton, D.; Bednar, S. The Influence of Mass Customization Strategy on Configuration Complexity of Assembly Systems. In Proceedings of the 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME 14, Capri, Italy, 23–25 July 2015; Volume 33, pp. 538–543. [Google Scholar]
- Oh, K.; Kim, D.; Hong, Y.S. Measurement of assembly system complexity based on the task differences induced from product variety. In Proceedings of the ASME Design Engineering Technical Conference, American Society of Mechanical Engineers (ASME), Boston, MA, USA, 2–5 August 2015. [Google Scholar]
- Bednar, S.; Rauch, E. Modeling and application of configuration complexity scale: Concept for customized production. Int. J. Adv. Manuf. Technol. 2019, 100, 485–501. [Google Scholar] [CrossRef]
- Fast-Berglund, Å.; Fässberg, T.; Hellman, F.; Davidsson, A.; Stahre, J. Relations between complexity, quality and cognitive automation in mixed-model assembly. J. Manuf. Syst. 2013, 32, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Davrajh, S.; Bright, G. Advanced quality management system for product families in mass customization and reconfigurable manufacturing. Assem. Autom. 2013, 33, 127–138. [Google Scholar] [CrossRef]
- Schmid, N.A.; Limère, V. A classification of tactical assembly line feeding problems. Int. J. Prod. Res. 2019, 57, 7586–7609. [Google Scholar] [CrossRef]
- Medini, K. Modularity and variety spinoffs: A supply chain planning perspective. Int. J. Ind. Eng. Appl. Pract. 2015, 22, 753–768. [Google Scholar]
- Li, S.; Daie, P. Configuration of assembly supply chain using hierarchical cluster analysis. In Proceedings of the 47th Cirp Conference on Manufacturing Systems, Windsor, ON, Canada, 28–30 April 2014; Volume 17, pp. 622–627. [Google Scholar]
- Mourtzis, D.; Doukas, M. Design and planning of manufacturing networks for mass customisation and personalisation: Challenges and Outlook. In Proceedings of the 2nd Cirp Robust Manufacturing Conference (Romac 2014), Bremen, Germany, 7–9 July 2014; Volume 19, pp. 1–13. [Google Scholar]
- Fazlollahtabar, H. Parallel autonomous guided vehicle assembly line for a semi-continuous manufacturing system. Assem. Autom. 2016, 36, 262–273. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Guan, Y. Research on hybrid-load AGV dispatching problem for mixed-model automobile assembly line. Procedia CIRP 2019, 81, 1059–1064. [Google Scholar] [CrossRef]
- Guo, W.; Jin, J.; Hu, S.J. Allocation of maintenance resources in mixed model assembly systems. J. Manuf. Syst. 2013, 32, 473–479. [Google Scholar] [CrossRef]
- Fast-Berglund, A.; Stahre, J. Task allocation in production systems—Measuring and analysing levels of automation. IFAC-PapersOnline 2013, 46, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Zogopoulos, V.; Xanthi, F. Augmented reality application to support the assembly of highly customized products and to adapt to production re-scheduling. Int. J. Adv. Manuf. Technol. 2019, 105, 3899–3910. [Google Scholar] [CrossRef]
- Um, J.; Popper, J.; Ruskowski, M. Modular augmented reality platform for smart operator in production environment. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems, St. Petersburg, Russia, 15–18 May 2018; pp. 720–725. [Google Scholar]
- Duan, F.; Tan, J.T.C.; Tong, J.G.; Kato, R.; Arai, T. Application of the assembly skill transfer system in an actual cellular manufacturing system. IEEE Trans. Autom. Sci. Eng. 2012, 9, 31–41. [Google Scholar] [CrossRef]
- Bastari, A.; Piersantelli, M.; Cristalli, C.; Paone, N. Self-adapting test-plans in production line: An application to vision control stations. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Montreal, QC, Canada, 25–28 October 2012; pp. 4360–4365. [Google Scholar]
- Mattsson, S.; Fast-Berglund, Å.; Li, D.; Thorvald, P. Forming a cognitive automation strategy for Operator 4.0 in complex assembly. Comput. Ind. Eng. 2020, 139, 105360. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, L.; Liu, C.; Tomizuka, M. Towards Efficient Human-Robot Collaboration with Robust Plan Recognition and Trajectory Prediction. IEEE Robot. Autom. Lett. 2020, 5, 2602–2609. [Google Scholar] [CrossRef]
- Sallez, Y.; Berger, T.; Bonte, T. The concept of “safety bubble” for reconfigurable assembly systems. Manuf. Lett. 2020, 24, 77–81. [Google Scholar] [CrossRef]
- Fast-Berglund, A.; Li, D.; Akerman, M. Creating Strategies to Improve the Use of IT- and IS-Systems in Final Assembly; Thorvald, P., Case, K., Eds.; Advances in Manufacturing Technology, XXXII; IOS Press: Amsterdam, The Netherlands, 2018; Volume 8, pp. 177–182. [Google Scholar]
- Bortolini, M.; Ferrari, E.; Gamberi, M.; Pilati, F.; Faccio, M. Assembly system design in the Industry 4.0 era: A general framework. IFAC-PapersOnLine 2017, 50, 5700–5705. [Google Scholar] [CrossRef]
- Cohen, Y.; Faccio, M.; Galizia, F.G.; Mora, C.; Pilati, F.; Gabriele, F.; Mora, C.; Pilati, F. Assembly system configuration through Industry 4.0 principles: The expected change in the actual paradigms. IFAC-PapersOnLine 2017, 50, 14958–14963. [Google Scholar] [CrossRef]
- Cohen, Y.; Faccio, M.; Pilati, F.; Yao, X. Design and management of digital manufacturing and assembly systems in the Industry 4.0 era. Int. J. Adv. Manuf. Technol. 2019, 105, 3565–3577. [Google Scholar] [CrossRef] [Green Version]
- Fast-Berglund, A.; Åkerman, M.; Li, D.; Salunkhe, O. Conceptualising Assembly 4.0 through the drone factory. IFAC-PapersOnLine 2019, 52, 1525–1530. [Google Scholar] [CrossRef]
- Johansson, P.E.C.; Eriksson, G.; Johansson, P.; Malmskold, L.; Fast-Berglund, A.; Moestam, L. Assessment based information needs in manual assembly. In Proceedings of the 24th International Conference on Production Research (ICPR), Posnan, Poland, 30 July–3 August 2017; pp. 366–371. [Google Scholar]
- Rauch, E.; Spena, P.R.; Matt, D.T. Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. Int. J. Interact. Des. Manuf. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Schmitt, R.; Dietrich, F.; Droeder, K. Big Data Methods for Precision Assembly. In Proceedings of the 6th CIRP Conference on Assembly Technologies and Systems (CATS), Gothenburg, Sweden, 16–18 May 2016; Volume 44, pp. 91–96. [Google Scholar]
- Unger, H.; Börner, F.; Müller, E. Context Related Information Provision in Industry 4.0 Environments. Procedia Manuf. 2017, 11, 796–805. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Makris, S.; Xanthakis, V.; Sipsas, K.; Chryssolouris, G. A concept for context-aware computing in manufacturing: The white goods case. Int. J. Comput. Integr. Manuf. 2016, 29, 839–849. [Google Scholar] [CrossRef]
- Gjeldum, N.; Mladineo, M.; Crnjac, M.; Veza, I.; Aljinovic, A. Performance analysis of the RFID system for optimal design of the intelligent assembly line in the learning factory. In Proceedings of the 8th CIRP Sponsored Conference on Learning Factories (CLF 2018), Patras, Greece, 12–13 April 2018; Volume 23, pp. 63–68. [Google Scholar]
- Bortolini, M.; Faccio, M.; Gamberi, M.; Pilati, F. Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Comput. Ind. Eng. 2020, 139. [Google Scholar] [CrossRef]
- Faccio, M.; Ferrari, E.; Gamberi, M.; Pilati, F. Human Factor Analyser for work measurement of manual manufacturing and assembly processes. Int. J. Adv. Manuf. Technol. 2019, 103, 861–877. [Google Scholar] [CrossRef]
- Krugh, M.; McGee, E.; McGee, S.; Mears, L.; Ivanco, A.; Podd, K.C.; Watkins, B. Measurement of operator-machine interaction on a chaku-chaku assembly line. In Proceedings of the 45th Sme North American Manufacturing Research Conference (NAMRC 45), Los Angeles, CA, USA, 4–8 June 2017; Volume 10, pp. 123–135. [Google Scholar]
- Larek, R.; Grendel, H.; Wagner, J.C.; Riedel, F. Industry 4.0 in manual assembly processes—A concept for real time production steering and decision making. In Proceedings of the 12th CIRP Conference on Intelligent Computation in Manufacturing Enginseering, Naples, Italy, 18–20 July 2018; Volume 79, pp. 165–169. [Google Scholar]
- Suginouchi, S.; Kokuryo, D.; Kaihara, T. Value co-creative manufacturing system for mass customization: Concept of smart factory and operation method using autonomous negotiation mechanism. Procedia CIRP 2017, 63, 727–732. [Google Scholar] [CrossRef]
- Kousi, N.; Koukas, S.; Michalos, G.; Makris, S. Scheduling of smart intra—Factory material supply operations using mobile robots. Int. J. Prod. Res. 2019, 57, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Peruzzini, M.; Grandi, F.; Pellicciari, M. Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng. 2020, 139, 105600. [Google Scholar] [CrossRef]
- Chung, B.D.; Kim, S.; Lee, J.S. Dynamic Supply Chain Design and Operations Plan for Connected Smart Factories with Additive Manufacturing. Appl. Sci. 2018, 8, 583. [Google Scholar] [CrossRef] [Green Version]
- Roemer, T.; Bruder, R. User centered design of a cyber-physical support solution for assembly processes. In Proceedings of the 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, Las Vegas, NV, USA, 26–30 July 2015; Volume 3, pp. 456–463. [Google Scholar]
- Ruppert, T.; Jaskó, S.; Holczinger, T.; Abonyi, J. Enabling technologies for operator 4.0: A survey. Appl. Sci. 2018, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Uva, A.E.; Gattullo, M.; Manghisi, V.M.; Spagnulo, D.; Cascella, G.L.; Fiorentino, M. Evaluating the effectiveness of spatial augmented reality in smart manufacturing: A solution for manual working stations. Int. J. Adv. Manuf. Technol. 2018, 94, 509–521. [Google Scholar] [CrossRef]
- Roldán-Gómez, J.J.; Crespo, E.; Martin-Barrio, A.; Pena-Tapia, E.; Barrientos, A. A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robot. Comput. Integr. Manuf. 2019, 59, 305–316. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X. Assembly operator training and process planning via virtual systems. Int. J. Sustain. Eng. 2011, 4, 57–67. [Google Scholar] [CrossRef]
- Pilati, F.; Faccio, M.; Gamberi, M.; Regattieri, A. Learning manual assembly through real-time motion capture for operator training with augmented reality. Procedia Manuf. 2020, 45, 189–195. [Google Scholar] [CrossRef]
- Rentzos, L.; Papanastasiou, S.; Papakostas, N.; Chryssolouris, G. Augmented reality for human-based assembly: Using product and process semantics. IFAC-PapersOnline 2013, 12, 98–101. [Google Scholar] [CrossRef]
- Provost, J.; Ebrahimi, A.H.; Akesson, K. Online support for shop-floor operators using body movements tracking. IFAC-PapersOnline 2013, 12, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Hoedt, S.; Claeys, A.; Van Landeghem, H.; Cottyn, J. Evaluation Framework for Virtual Training within Mixed-Mo del Manual Assembly. IFAC-PapersOnLine 2016, 49, 261–266. [Google Scholar] [CrossRef]
- Makris, S.; Karagiannis, P.; Koukas, S.; Matthaiakis, A. Augmented reality system for operator support in human—Robot collaborative assembly. CIRP Ann. Manuf. Technol. 2016, 65, 61–64. [Google Scholar] [CrossRef]
- Ojer, M.; Alvarez, H.; Serrano, I.; Saiz, F.A.; Barandiaran, I.; Aguinaga, D.; Querejeta, L.; Alejandro, D. Projection-Based Augmented Reality Assistance for Manual Electronic Component Assembly Processes. Appl. Sci. 2020, 10, 796. [Google Scholar] [CrossRef] [Green Version]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Zawadzki, P.; Zywicki, K. Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manag. Prod. Eng. Rev. 2016, 7, 105–112. [Google Scholar] [CrossRef]
- Brettel, M.; Klein, M.; Friederichsen, N. The relevance of manufacturing flexibility in the context of Industrie 4.0. In Proceedings of the 48th CIRP Conference on Manufacturing Systems, Ischia, Italy, 24–26 June 2015; Volume 41, pp. 105–110. [Google Scholar]
- Sujova, E.; Cierna, H.; Zabinska, I. Application of digitization procedures of production in practice. Manag. Syst. Prod. Eng. 2019, 27, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Kuliaev, V.; Atmojo, U.D.; Erla, S.S.; Blech, J.O.; Vyatkin, V. Towards Product Centric Manufacturing: From Digital Twins to Product Assembly. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Espoo, Finland, 22–25 July 2019; pp. 164–171. [Google Scholar]
- Raza, M.; Kumar, P.M.; Hung, D.V.; Davis, W.; Nguyen, H.; Trestian, R. A Digital Twin Framework for Industry 4.0 Enabling Next-Gen Manufacturing. In Proceedings of the 2020 9th International Conference on Industrial Technology and Management, Oxford, UK, 11–13 February 2020; pp. 73–77. [Google Scholar]
- Mattsson, S.; Fast-Berglund, A.; Akerman, M. Assessing Operator Wellbeing through Physiological Measurements in Real-TimeTowards Industrial Application. Technologies 2017, 5, 61. [Google Scholar] [CrossRef]
- Borgianni, Y.; Rauch, E.; Maccioni, L.; Mark, B.G. User Experience Analysis in Industry 4.0-The Use of Biometric Devices in Engineering Design and Manufacturing. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEE IEEM), Bangkok, Thailand, 16–19 December 2018; pp. 192–196. [Google Scholar]
- Bauters, K.; Cottyn, J.; Claeys, D.; Slembrouck, M.; Veelaert, P.; van Landeghem, H. Automated work cycle classification and performance measurement for manual work stations. Robot. Comput. Integr. Manuf. 2018, 51, 139–157. [Google Scholar] [CrossRef]
- Muller, R.; Vette-Steinkamp, M.; Hoerauf, L.; Speicher, C.; Bashir, A. Worker centered cognitive assistance for dynamically created repairing jobs in rework area. In Proceedings of the 51st CIRP Conference on Manufacturing Systems, Stockholm, Sweden, 16–18 May 2018; Volume 72, pp. 141–146. [Google Scholar]
- Oestreich, H.; Toeniges, T.; Wojtynek, M.; Wrede, S. Interactive Learning of Assembly Processes using Digital Assistance. Res. Exp. Educ. 2019, 31, 14–19. [Google Scholar] [CrossRef]
- Ferrari, E.; Gamberi, M.; Pilati, F.; Regattieri, A. Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes. IFAC-PapersOnLine 2018, 51, 411–416. [Google Scholar] [CrossRef]
- Fettermann, D.C.; Sa Cavalcante, C.G.; de Almeida, T.D.; Tortorella, G.L. How does Industry 4.0 contribute to operations management? J. Ind. Prod. Eng. 2018, 35, 255–268. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.-S.; Yang, J.-H.; Wang, K.-S. Industry 4.0: A way from mass customization to mass personalization production. Adv. Manuf. 2017, 5, 311–320. [Google Scholar] [CrossRef]
- Buergin, J.; Minguillon, F.E.; Wehrle, F.; Haefner, B.; Lanza, G. Demonstration of a Concept for Scalable Automation of Assembly Systems in a Learning Factory. In Proceedings of the 7th Conference on Learning Factories (CLF 2017), Darmstadt, Germany, 4–5 April 2017; Volume 9, pp. 33–40. [Google Scholar]
- Bosch, T.; Mathiassen, S.E.; Visser, B.; de Looze, M.P.; van Dieen, J.H. The effect of work pace on workload, motor variability and fatigue during simulated light assembly work. Ergonomics 2011, 54, 154–168. [Google Scholar] [CrossRef]
- Hillmann, M.; Stuehler, S.; Schloske, A.; Geisinger, D.; Westkaemper, E. Improving small-quantity assembly lines for complex industrial products by adapting the Failure Process Matrix (FPM): A case study. In Proceedings of the 47th CIRP Conference on Manufacturing Systems, Windsor, ON, Canada, 28–30 April 2014; Volume 17, pp. 236–241. [Google Scholar]
- Wohlers, B.; Dziwok, S.; Bremer, C.; Schmelter, D.; Lorenz, W. Improving the product control of mechatronic systems using key performance indicators. In Proceedings of the 24th International Conference on Production Research, Posnan, Poland, 30 July–3 August 2017; pp. 323–329. [Google Scholar]
- Tortorella, G.L.; Miorando, R.; Marodin, G. Lean supply chain management: Empirical research on practices, contexts and performance. Int. J. Prod. Econ. 2017, 193, 98–112. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Li, W.; Evans, S.; Yin, Y. Effects of key enabling technologies for seru production on sustainable performance. OMEGA Int. J. Manag. Sci. 2017, 66, 290–307. [Google Scholar] [CrossRef]
- Colledani, M.; Yemane, A.; Lugaresi, G.; Borzi, G.; Callegaro, D. A software platform for supporting the design and reconfiguration of versatile assembly systems. Procedia CIRP 2018, 72, 808–813. [Google Scholar] [CrossRef]
- Mohammed, A.R.K.; Bilal, A. Manufacturing enhancement through reduction of cycle time using time-study statistical techniques in automotive industry. In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems, Taipei, Taiwan, 6–9 May 2019; pp. 681–686. [Google Scholar]
- Thompson, M.K.; Juel Jespersen, I.K.; Kjærgaard, T. Design for manufacturing and assembly key performance indicators to support high-speed product development. Procedia CIRP 2018, 70, 114–119. [Google Scholar] [CrossRef]
- Park, J.M. Improved methodology for RMS adaptability evaluation. Int. J. Precis. Eng. Manuf. 2017, 18, 1537–1546. [Google Scholar] [CrossRef]
- Yang, S.; Schrage, J.; Haefner, B.; Lanza, G. Development of a regionalized implementation strategy for smart automation within assembly systems in China. Procedia CIRP 2019, 80, 723–728. [Google Scholar] [CrossRef]
- Hüttemann, G.; Buckhorst, A.F.; Schmitt, R.H. Modelling and assessing line-less mobile assembly systems. Procedia CIRP 2019, 81, 724–729. [Google Scholar] [CrossRef]
- Joppen, R.; von Enzberg, S.; Gundlach, J.; Kühn, A.; Dumitrescu, R. Key performance indicators in the production of the future. Procedia CIRP 2019, 81, 759–764. [Google Scholar] [CrossRef]
- Hwang, G.; Lee, J.; Park, J.; Chang, T.-W. Developing performance measurement system for Internet of Things and smart factory environment. Int. J. Prod. Res. 2017, 55, 2590–2602. [Google Scholar] [CrossRef]
- Weber, A. Smart Manufacturing Stakeholders and Their Requirements. In Proceedings of the 2018 E-Manufacturing & Design Collaboration Symposium (EMDC 2018), HsinChu, Taiwan, 7 September 2018. [Google Scholar]
- Orellana, F.; Torres, R. From legacy-based factories to smart factories level 2 according to the industry 4.0. Int. J. Comput. Integr. Manuf. 2019, 32, 441–451. [Google Scholar] [CrossRef]
- Hwang, G.; Kang, S.; Dweekat, A.J.; Park, J.; Chang, T.-W. An iot data anomaly response model for smart factory performance measurement. Int. J. Ind. Eng. Appl. Pract. 2018, 25, 702–718. [Google Scholar]
- Fantini, P.; Pinzone, M.; Taisch, M. Placing the operator at the centre of Industry 4.0 design: Modelling and assessing human activities within cyber-physical systems. Comput. Ind. Eng. 2020, 139, 105058. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. J. Manuf. Technol. Manag. 2020, 31, 1–30. [Google Scholar] [CrossRef]
- Mueller, R.; Vette, M.; Hoerauf, L.; Speicher, C.; Burkhard, D. Lean information and communication tool to connect shop and top floor in small and medium-sized enterprises. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing, Modena, Italy, 27–30 June 2017; Volume 11, pp. 1043–1052. [Google Scholar]
- Rauch, E.; Vickery, A.R. Systematic analysis of needs and requirements for the design of smart manufacturing systems in SMEs. J. Comput. Des. Eng. 2020, 7, 129–144. [Google Scholar] [CrossRef]
- Li, D.; Fast-Berglund, A.; Paulin, D. Current and future Industry 4.0 capabilities for information and knowledge sharing Case of two Swedish SMEs. Int. J. Adv. Manuf. Technol. 2019, 105, 3951–3963. [Google Scholar] [CrossRef] [Green Version]
- Fast-Berglund, A.; Romero, D. Strategies for Implementing Collaborative Robot Applications for the Operator 4.0. In Proceedings of the Advances in Production Management Systems: Production Management for the Factory of the Future, Austin, TX, USA, 1–5 September 2019; pp. 682–689. [Google Scholar]
- Taylor, M.P.; Boxall, P.; Chen, J.J.J.; Xu, X.; Liew, A.; Adeniji, A. Operator 4.0 or Maker 1.0? Exploring the implications of Industrie 4.0 for innovation, safety and quality of work in small economies and enterprises. Comput. Ind. Eng. 2020, 139, 105486. [Google Scholar] [CrossRef]
- Stump, B.; Badurdeen, F. Integrating lean and other strategies for mass customization manufacturing: A case study. J. Intell. Manuf. 2012, 23, 109–124. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Yusuf, Y.Y.; Adeleye, E.O.; Papadopoulos, T.; Kovvuri, D.; Geyi, D.G. Agile manufacturing: An evolutionary review of practices. Int. J. Prod. Res. 2019, 57, 5154–5174. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulos, C.G. Flow customizer: An algorithm to design lean-flow production systems for mass customization. Int. J. Ind. Eng. Manag. 2014, 5, 179–184. [Google Scholar]
- Carbia Diaz, I.; Jin, Y.; Ares, E. Cycle time study of wing spar assembly on aircraft factory. In Proceedings of the Manufacturing Engineering Society International Conference 2017 (MESIC 2017), Vigo, Spain, 28–30 June 2017; Volume 13, pp. 1019–1025. [Google Scholar]
- Godina, R.; Pimentel, C.; Silva, F.J.G.G.; Matias, J.C.O. A Structural Literature Review of the Single Minute Exchange of Die: The Latest Trends. In Proceedings of the 28th International Conference on Flexible Automation and Intelligent Manufacturing (Faim2018): Global Integration of Intelligent Manufacturing and Smart Industry for Good of Humanity, Columbus, OH, USA, 11–14 June 2018; Volume 17, pp. 783–790. [Google Scholar]
- Cannas, V.G.; Pero, M.; Pozzi, R.; Rossi, T. Complexity reduction and kaizen events to balance manual assembly lines: An application in the field. Int. J. Prod. Res. 2018, 56, 3914–3931. [Google Scholar] [CrossRef]
- Nagi, M.; Chen, F.F.; Wan, H.-D. Throughput Rate Improvement in a Multiproduct Assembly Line Using Lean and Simulation Modeling and Analysis. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing, Modena, Italy, 27–30 June 2017; Volume 11, pp. 593–601. [Google Scholar]
- Adnan, A.N.; Jaffar, A.; Yusoff, N.; Halim, N.H.A. Implementation of Continuous Flow System in Manufacturing Operation. Appl. Mech. Mater. 2013, 393, 9–14. [Google Scholar] [CrossRef]
- Li, J. Continuous improvement at Toyota manufacturing plant: Applications of production systems engineering methods. Int. J. Prod. Res. 2013, 51, 7235–7249. [Google Scholar] [CrossRef]
- Pereira, A.; Abreu, M.F.; Silva, D.; Alves, A.C.; Oliveira, J.A.; Lopes, I.; Figueiredo, M.C. Reconfigurable Standardized Work in a Lean company—A case study. In Proceedings of the Sixth International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2016), Bath, UK, 4–6 September 2016; Volume 52, pp. 239–244. [Google Scholar]
- Oberhausen, C.; Plapper, P. Value stream management in the lean manufacturing laboratory. Procedia CIRP 2015, 32, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Ramnath, B.V.; Chandrasekhar, V.; Elanchezhian, C.; Bruce, V.S.L.; Venkataraman, K. Value stream evaluation and simulation to improve material flow and productivity. In Advanced Research in Design, Manufacturing And Material, Proceedings of the International Symposium on Engineering and Technology (ISET-2014), Pune, India, 9–10 January 2014; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 612, p. 89. [Google Scholar]
- Sims, T.; da Wan, H.H.-D.H. Constraint identification techniques for lean manufacturing systems. Robot. Comput. Integr. Manuf. 2017, 43, 50–58. [Google Scholar] [CrossRef]
- Finnsgard, C.; Wanstrom, C.; Medbo, L.; Neumann, W.P. Impact of materials exposure on assembly workstation performance. Int. J. Prod. Res. 2011, 49, 7253–7274. [Google Scholar] [CrossRef]
- Kilic, H.S.; Durmusoglu, M.B.M.B. Design of kitting system in lean-based assembly lines. Assem. Autom. 2012, 32, 226–234. [Google Scholar] [CrossRef]
- Fansuri, A.F.H.; Rose, A.N.M.; Nik Mohamed, Z.; Ahmad, H.; Mohamed, N.M.Z.N.; Ahmad, H. The challenges of lean manufacturing implementation in kitting assembly. In Proceedings of the 4th International Conference On Mechanical Engineering Research (ICMER 2017), Kuantan, Malaysia, 1–2 August 2017; Volume 257. [Google Scholar]
- Usta, S.K.; Oksuz, M.K.; Durmusoglu, M.B. Design methodology for a hybrid part feeding system in lean-based assembly lines. Assem. Autom. 2017, 37, 84–102. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Shigematsu, K.; Kato, S.; Kojima, F.; Onari, H.; Takata, S. Design method of material handling systems for lean automation-Integrating equipment for reducing wasted waiting time. CIRP Ann. Technol. 2017, 66, 449–452. [Google Scholar] [CrossRef]
- Battini, D.; Gamberi, M.; Persona, A.; Sgarbossa, F. Part-feeding with supermarket in assembly systems: Transportation mode selection model and multi-scenario analysis. Assem. Autom. 2015, 35, 149–159. [Google Scholar] [CrossRef]
- Koukoulaki, T. The impact of lean production on musculoskeletal and psychosocial risks: An examination of sociotechnical trends over 20 years. Appl. Ergon. 2014, 45, 198–212. [Google Scholar] [CrossRef]
- Silva, M.P.; Tortorella, G.L.G.L.; Amaral, F.G.F.G.G. Psychophysical Demands and Perceived WorkloadAn Ergonomics Standpoint for Lean Production in Assembly Cells. Hum. FACTORS Ergon. Manuf. Serv. Ind. 2016, 26, 643–654. [Google Scholar] [CrossRef]
- Negreiros, A.W.; da Silva, P.R.; Ferreira Martins Arezes, P.M.; Dangelino, R.; Padula, R.S. Manufacturing assembly serial and cells layouts impact on rest breaks and workers’ health. Int. J. Ind. Ergon. 2019, 70, 22–27. [Google Scholar] [CrossRef]
- Mottos, D.L.; Neto, R.A.; Diaz Merino, E.A.; Forcellini, F.A. Simulating the influence of physical overload on assembly line performance: A case study in an automotive electrical component plant. Appl. Ergon. 2019, 79, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Botti, L.; Mora, C.; Regattieri, A. Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Comput. Ind. Eng. 2017, 111, 481–491. [Google Scholar] [CrossRef]
- Carmo-Silva, S.; Morais, M.C.; Fernandes, F.A. A practical methodology for cellular manufacturing systems design—An industrial study. Rom. Rev. Precis. Mech. Opt. Mechatron. 2012, 41, 103–118. [Google Scholar]
- Braglia, M.; Frosolini, M.; Gallo, M.M.; Marrazzini, L. Lean manufacturing tool in engineer-to-order environment: Project cost deployment. Int. J. Prod. Res. 2019, 57, 1825–1839. [Google Scholar] [CrossRef]
- Savino, M.M.; Mazza, A. Kanban-driven parts feeding within a semi-automated O-shaped assembly line: A case study in the automotive industry. Assem. Autom. 2015, 35, 3–15. [Google Scholar] [CrossRef]
- Yin, Y.; Stecke, K.E.; Swink, M.; Kaku, I. Lessons from seru production on manufacturing competitively in a high cost environment. J. Oper. Manag. 2017, 49–51, 67–76. [Google Scholar] [CrossRef]
- Jacobsson, L.; Wickberg, A.; De Vin, L. Creating Industrially Relevant Environments for Teaching Lean Manufacturing at Karlstad University; Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2016; Volume 3, pp. 514–519. [Google Scholar]
- Ogorodnyk, O.; Granheim, M.V.; Holtskog, H. Preconditions for Learning Factory. In Proceedings of the 6th CIRP Conference on Learning Factories, Braunschweig, Germany, 26–28 March 2016; Volume 54, pp. 35–40. [Google Scholar]
- Karre, H.; Hammer, M.; Kleindienst, M.; Ramsauer, C. Transition towards an Industry 4.0 state of the LeanLab at Graz University of Technology. In Proceedings of the 7th Conference on Learning Factories (CLF 2017), Darmstadt, Germany, 4–5 April 2017; Volume 9, pp. 206–213. [Google Scholar]
- Blöchl, S.J.; Schneider, M. Simulation Game for Intelligent Production Logistics—The PuLL® Learning Factory. Procedia CIRP 2016, 54, 130–135. [Google Scholar] [CrossRef] [Green Version]
- De Vin, L.J.; Jacobsson, L.; Odhe, J. Simulator-assisted lean production training. Prod. Manuf. Res. Open Access J. 2019, 7, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Bun, P.; Trojanowska, J.; Rewers, P. VR and AR in Lean Manufacturing Classes. In Advances in Manufacturing Ii, Vol 1—Solutions for Industry 4.0; Trojanowska, J., Ciszak, O., Machado, J.M., Pavlenko, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 342–351. [Google Scholar]
- Lanza, G.; Jondral, A.; Drotleff, U. Valuation of increased production system performance by integrated production systems. Prod. Eng. 2012, 6, 79–87. [Google Scholar] [CrossRef]
- Roessler, M.P.; Abele, E.; Metternich, J. Simulation Based Multi-criteria Assessment of Lean Material Flow Design Alternatives. In Advanced Materials, Mechanics and Industrial Engineering; Kumar, V., Marina, P., Eds.; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 598, pp. 661–666. [Google Scholar]
- Sowdon, R.B.; Tillman, W.R. Lean Management implementation in USPS mail processing operations. In Proceedings of the 67th Annual Conference and Expo of the Institute of Industrial Engineers 2017, Pittsburgh, PA, USA, 20–23 May 2017; pp. 632–637. [Google Scholar]
- Pei, S.; Zhao, J.; Zhang, N.; Guo, M. Methodology on developing an assessment tool for intralogistics by considering cyber-physical production systems enabling technologies. Int. J. Comput. Integr. Manuf. 2019, 32, 406–412. [Google Scholar] [CrossRef]
- Ante, G.; Facchini, F.; Mossa, G.; Digiesi, S. Developing a key performance indicators tree for lean and smart production systems. IFAC-PapersOnLine 2018, 51, 13–18. [Google Scholar] [CrossRef]
- Sangwa, N.R.; Sangwan, K.S. Development of an integrated performance measurement framework for Lean organizations. J. Manuf. Technol. Manag. 2018, 29, 41–84. [Google Scholar] [CrossRef]
- Roth, N.; Deuse, J.; Biedermann, H. A framework for System Excellence assessment of production systems, based on Lean thinking, business excellence, and factory physics. Int. J. Prod. Res. 2020, 58, 1074–1091. [Google Scholar] [CrossRef]
- Cortes, H.; Daaboul, J.; Le Duigou, J.; Eynard, B. Strategic Lean Management: Integration of operational Performance Indicators for strategic Lean management. IFAC-PapersOnLine 2016, 49, 65–70. [Google Scholar] [CrossRef]
- Kovács, T.; Kő, A.; Demeter, K. Measuring the impact of lean practices on manufacturing performance—case study from the process industry. Int. J. Lean Six Sigma 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production in industry 4.0 (2011?2018): A bibliometric analysis. Int. J. Prod. Res. 2020, 58, 1605–1627. [Google Scholar] [CrossRef]
- Mrugalska, B.; Wyrwicka, M.K. Towards Lean Production in Industry 4.0. In Proceedings of the 7th International Conference on Engineering, Project, and Production Management, Amman, Jordan, 20–22 September 2017; Volume 182, pp. 466–473. [Google Scholar]
- Shahin, M.; Chen, F.F.F.; Bouzary, H.; Krishnaiyer, K. Integration of Lean practices and Industry 4.0 technologies: Smart manufacturing for next-generation enterprises. Int. J. Adv. Manuf. Technol. 2020, 107, 2927–2936. [Google Scholar] [CrossRef]
- Tortorella, G.; Sawhney, R.; Jurburg, D.; de Paula, I.C.; Tlapa, D.; Thurer, M. Towards the proposition of a Lean Automation framework Integrating Industry 4.0 into Lean Production. J. Manuf. Technol. Manag. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Bittencourt, V.L.; Alves, A.C.; Leão, C.P. Lean Thinking contributions for Industry 4.0: A systematic literature review. IFAC-PapersOnLine 2019, 52, 904–909. [Google Scholar] [CrossRef]
- Dombrowski, U.; Richter, T.; Krenkel, P. Interdependencies of Industrie 4.0 & Lean Production Systems—A use cases analysis. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing, Modena, Italy, 27–30 June 2017; Volume 11, pp. 1061–1068. [Google Scholar]
- Powell, D.; Romero, D.; Gaiardelli, P.; Cimini, C.; Cavalieri, S. Towards Digital Lean Cyber-Physical Production Systems: Industry 4.0 Technologies as Enablers of Leaner Production. In Proceedings of the Advances in Production Management Systems: Smart Manufacturing for Industry 4.0, Seoul, Korea, 26–30 August 2018; Volume 536, pp. 353–362. [Google Scholar]
- Sanders, A.; Elangeswaran, C.; Wulfsberg, J. Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing. J. Ind. Eng. Manag. 2016, 9, 811–833. [Google Scholar] [CrossRef] [Green Version]
- Buer, S.-V.; Strandhagen, J.O.; Chan, F.T.S. The link between Industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef] [Green Version]
- Lai, N.Y.G.; Wong, K.H.; Halim, D.; Lu, J.; Kang, H.S. Industry 4.0 Enhanced Lean Manufacturing. In Proceedings of the 2019 8th International Conference on Industrial Technology and Management (ICITM 2019), Cambridge, UK, 2–4 March 2019; pp. 206–211. [Google Scholar]
- Dombrowski, U.; Richter, T. The Lean Production System 4.0 Framework—Enhancing Lean Methods by Industrie 4.0. In Proceedings of the Advances in Production Management Systems: Smart Manufacturing for Industry 4.0, Seoul, Korea, 26–30 August 2018; Volume 536, pp. 410–416. [Google Scholar]
- Majiwala, H.; Sharma, S.; Gandhi, P. Lean and Industry 4.0 Strive to Create Smart Factory through Integration of Systems: An Exploratory Review; AISC: Chicago, IL, USA, 2020; Volume 1122, ISBN 9783030398743. [Google Scholar]
- Tortorella, G.L.; Fettermann, D. Implementation of industry 4.0 and lean production in brazilian manufacturing companies. Int. J. Prod. Res. 2018, 56, 2975–2987. [Google Scholar] [CrossRef]
- Rossini, M.; Costa, F.; Tortorella, G.L.; Portioli-Staudacher, A. The interrelation between Industry 4.0 and lean production: An empirical study on European manufacturers. Int. J. Adv. Manuf. Technol. 2019, 102, 3963–3976. [Google Scholar] [CrossRef]
- Chiarini, A.; Belvedere, V.; Grando, A. Industry 4.0 strategies and technological developments. An exploratory research from Italian manufacturing companies. Prod. Plan. Control 2020, 31, 1385–1398. [Google Scholar] [CrossRef]
- Lorenz, R.; Buess, P.; Macuvele, J.; Friedli, T.; Netland, T.H. Lean and Digitalization-Contradictions or Complements? In Proceedings of the Advances in Production Management Systems: Production Management for the Factory of the Future, Austin, TX, USA, 1–5 September 2019; pp. 77–84. [Google Scholar]
- Lugert, A.; Batz, A.; Winkler, H. Empirical assessment of the future adequacy of value stream mapping in manufacturing industries. J. Manuf. Technol. Manag. 2018, 29, 886–906. [Google Scholar] [CrossRef]
- Kolberg, D.; Knobloch, J.; Zühlke, D. Towards a Lean automation interface for workstations. Int. J. Prod. Res. 2017, 55, 2845–2856. [Google Scholar] [CrossRef]
- Romero, D.; Gaiardelli, P.; Powell, D.; Wuest, T.; Thurer, M. Digital Lean Cyber-Physical Production Systems: The Emergence of Digital Lean Manufacturing and the Significance of Digital Waste. In Proceedings of the Advances in Production Management Systems: Production Management for Data-Driven, Intelligent, Collaborative, and Sustainable Manufacturing, Seoul, Korea, 26–30 August 2018; Volume 535, pp. 11–20. [Google Scholar]
- Romero, D.; Gaiardelli, P.; Thurer, M.; Powell, D.; Wuest, T. Cyber-Physical Waste Identification and Elimination Strategies in the Digital Lean Manufacturing World. In Proceedings of the Advances in Production Management Systems: Production Management for the Factory of the Future, Austin, TX, USA, 1–5 September 2019; pp. 37–45. [Google Scholar]
- Alfredo Jimenez-Garcia, J.; Yanez-Mendiola, J.; Medina-Flores, J.M.; Mezura-Montes, E. Waiting waste reduction in assembly lines using heuristics and simulation scenarios. Dyna 2014, 89, 50–60. [Google Scholar] [CrossRef]
- Malik, A.A.; Bilberg, A. Complexity-based task allocation in human-robot collaborative assembly. Ind. Robot 2019, 46, 471–480. [Google Scholar] [CrossRef]
- Ito, T.; Abd Rahman, M.S.; Mohamad, E.; Abd Rahman, A.A.; Salleh, M.R. Internet of things and simulation approach for decision support system in lean manufacturing. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, 19-00267. [Google Scholar] [CrossRef] [Green Version]
- Doh, S.W.; Deschamps, F.; Pinheiro De Lima, E. Systems Integration in the Lean Manufacturing Systems Value Chain to Meet Industry 4.0 Requirements. In Proceedings of the Transdisciplinary Engineering: Crossing Boundaries, Curitiba, Brazil, 3–7 October 2016; Volume 4, pp. 642–650. [Google Scholar]
- Rother, E.; Baboli, A.; Bernardini, L. Industrial excellence and industry 4.0: Management concepts evolution—Case study in automotive industry. In Proceedings of the International Conference on Computers and Industrial Engineering, Beijing, China, 18–21 October 2019. [Google Scholar]
- Rother, E.; Baboli, A. Lean Manager in the Factory of the Future Case study in automotive industry. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 26–29 April 2019; pp. 218–224. [Google Scholar]
- Romero, D.; Gaiardelli, P.; Powel, D.; Wuest, T.; Thurer, M. Total Quality Management and Quality Circles in the Digital Lean Manufacturing World. In Proceedings of the Advances in Production Management Systems: Production Management for the Factory Of The Future, Austin, TX, USA, 1–5 September 2019; pp. 3–11. [Google Scholar]
- Dencker, K.; Mårtensson, L.; Fasth, Å.; Stahre, J. “The operator saves our day?”—Why do we need the operator. In Advances in Human Factors, Ergonomics, and Safety in Manufacturing and Service Industries; CRC Press: New York, NY, USA, 2011; pp. 62–72. ISBN 9781439835005. [Google Scholar]
- Faccio, M.; Gamberi, M.; Bortolini, M. Hierarchical approach for paced mixed-model assembly line balancing and sequencing with jolly operators. Int. J. Prod. Res. 2016, 54, 761–777. [Google Scholar] [CrossRef]
- Michalos, G.; Makris, S.; Rentzos, L.; Chryssolouris, G. Dynamic job rotation for workload balancing in human based assembly systems. CIRP J. Manuf. Sci. Technol. 2010, 2, 153–160. [Google Scholar] [CrossRef]
- Michalos, G.; Makris, S.; Mourtzis, D. A web based tool for dynamic job rotation scheduling using multiple criteria. CIRP Ann. Manuf. Technol. 2011, 60, 453–456. [Google Scholar] [CrossRef]
- Luo, X.; Li, W.; Tu, Y.; Xue, D.; Tang, J. Operator allocation planning for reconfigurable production line in one-of-a-kind production. Int. J. Prod. Res. 2011, 49, 689–705. [Google Scholar] [CrossRef]
- Liu, C.; Yang, N.; Li, W.; Lian, J.; Evans, S.; Yin, Y. Training and assignment of multi-skilled workers for implementing seru production systems. Int. J. Adv. Manuf. Technol. 2013, 69, 937–959. [Google Scholar] [CrossRef]
- Wang, C.; Kang, N.; Zheng, L.L. A factory-level dynamic operator allocation policy: The bubble allocation. Int. J. Prod. Res. 2016, 54, 4240–4255. [Google Scholar] [CrossRef]
- Ritt, M.; Costa, A.M.; Miralles, C. The assembly line worker assignment and balancing problem with stochastic worker availability. Int. J. Prod. Res. 2016, 54, 907–922. [Google Scholar] [CrossRef]
- Gebennini, E.; Zeppetella, L.; Grassi, A.; Rimini, B. Optimal job assignment considering operators’ walking costs and ergonomic aspects. Int. J. Prod. Res. 2018, 56, 1249–1268. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, Y.-P.; Wang, Y.-C. Operator assignment with cell loading and product sequencing in labour-intensive assembly cells—A case study of a bicycle assembly company. Int. J. Prod. Res. 2018, 56, 5495–5510. [Google Scholar] [CrossRef]
- Gyulai, D.; Kádár, B.; Monostori, L. Scheduling and Operator Control in Reconfigurable Assembly Systems. Procedia CIRP 2017, 63, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Looze, M.P.; Bosch, T.; van Rhijn, J.W. Increasing Short-Term Output in Assembly Work. Hum. FACTORS Ergon. Manuf. Serv. Ind. 2010, 20, 470–477. [Google Scholar] [CrossRef]
- Abad, A.G.; Paynabar, K.; Jin, J.J. Modeling and Analysis of Operator Effects on Process Quality and Throughput in Mixed Model Assembly Systems. J. Manuf. Sci. Eng. Trans. ASME 2011, 133, 021016. [Google Scholar] [CrossRef] [Green Version]
- Gusikhin, O.; Jin, X.; Klampfl, E.; Reich, D.; Visintainer, R. Dynamic modeling of operator overload conditions in mixed model automotive assembly. In Proceedings of the IFAC Proceedings Volumes (IFAC-PapersOnline), Saint Petersburg, Russia, 19–21 June 2013; Volume 46, pp. 1884–1889. [Google Scholar]
- Falck, A.-C.; Ortengren, R.; Rosenqvist, M.; Soderberg, R. Proactive assessment of basic complexity in manual assembly: Development of a tool to predict and control operator-induced quality errors. Int. J. Prod. Res. 2017, 55, 4248–4260. [Google Scholar] [CrossRef]
- Limere, V.; Van Landeghem, H.; Goetschalckx, M. A decision model for kitting and line stocking with variable operator walking distances. Assem. Autom. 2015, 35, 47–56. [Google Scholar] [CrossRef]
- Boudella, M.E.A.M.E.A.; Sahin, E.; Dallery, Y. Kitting optimisation in Just-in-Time mixed-model assembly lines: Assigning parts to pickers in a hybrid robot-operator kitting system. Int. J. Prod. Res. 2018, 56, 5475–5494. [Google Scholar] [CrossRef]
- Costa Mateus, J.E.J.E.; Aghezzaf, E.H.E.-H.; Claeys, D.; Limère, V.; Cottyn, J. Method for transition from manual assembly to Human-Robot collaborative assembly. IFAC-PapersOnLine 2018, 51, 405–410. [Google Scholar] [CrossRef]
- Ahmed, A.; Guozhu, J.; Salam, A.; Nawaz, M.K. Reliability and Quality Control Approach for Collaborative Assembly Process. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 210–217. [Google Scholar]
- Arai, T.; Kato, R.; Fujita, M. Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann. Technol. 2010, 59, 5–8. [Google Scholar] [CrossRef]
- Tan, J.T.C.; Duan, F.; Kato, R.; Arai, T. Safety strategy for human-robot collaboration: Design and development in cellular manufacturing. Adv. Robot. 2010, 24, 839–860. [Google Scholar] [CrossRef]
- Anton, F.D.; Anton, S.; Borangiu, T. Human-robot natural interaction and collision avoidance in flexible manufacturing cells. IFAC-PapersOnline 2012, 14, 835–840. [Google Scholar] [CrossRef]
- Coetzee, R.; van Dyk, L.; van der Merwe, K.R. Towards addressing respect for people during lean implementation. Int. J. Lean Six Sigma 2019, 10, 830–854. [Google Scholar] [CrossRef]
- Jayamaha, N.P.; Wagner, J.P.; Grigg, N.P.; Campbell-Allen, N.M.; Harvie, W. Testing a theoretical model underlying the ‘Toyota Way’—An empirical study involving a large global sample of Toyota facilities. Int. J. Prod. Res. 2014, 52, 4332–4350. [Google Scholar] [CrossRef]
- Vicente, S.; Alves, A.C.; Carvalho, M.S.; Costa, N. Business sustainability through employees involvement: A case study. FME Trans. 2015, 43, 362–369. [Google Scholar] [CrossRef]
- Szwedzka, K.; Kaczmarek, J. One point lesson as a tool for work standardization and optimization—Case study. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 605, pp. 21–31. [Google Scholar]
- De Haan, J.; Naus, F.; Overboom, M. Creative tension in a lean work environment: Implications for logistics firms and workers. Int. J. Prod. Econ. 2012, 137, 157–164. [Google Scholar] [CrossRef]
- Van Gestel, P.; Pons, D.J.; Pulakanam, V. Operator agency in process intervention: Tampering versus application of tacit knowledge. J. Ind. Eng. Int. 2015, 11, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Puvanasvaran, P.; Megat, H.; Hong, T.S.; Razali, M.M.; Magid, H.A. Lean process management implementation through enhanced problem solving capabilities. J. Ind. Eng. Manag. 2010, 3, 447–493. [Google Scholar] [CrossRef] [Green Version]
- Qudrat-Ullah, H.; Seong, B.S.; Mills, B.L. Improving high variable-low volume operations: An exploration into the lean product development. Int. J. Technol. Manag. 2012, 57, 49–70. [Google Scholar] [CrossRef]
- Gil Vilda, F.; Yagüe Fabra, J.A.; Torrents, A.S. Person-Based Design: A Human-Centered Approach for Lean Factory Design. Procedia Manuf. 2019, 41, 445–452. [Google Scholar] [CrossRef]
- Lindblom, J.; Wang, W. Towards an Evaluation Framework of Safety, Trust, and Operator Experience in Different Demonstrators of Human-Robot Collaboration; Thorvald, P., Case, K., Eds.; Advances in Manufacturing Technology XXXII; IOS Press: Amsterdam, The Netherlands, 2018; Volume 8, pp. 145–150. [Google Scholar]
- Golan, M.; Cohen, Y.; Singer, G. A framework for operator– workstation interaction in Industry 4.0. Int. J. Prod. Res. 2019, 58, 2421–2432. [Google Scholar] [CrossRef]
- Romero, D.; Bernus, P.; Noran, O.; Stahre, J.; Berglund, Å.F. The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In IFIP Advances in Information and Communication Technology; Springer: New York, NY, USA, 2016; Volume 488, pp. 677–686. [Google Scholar]
- Papcun, P.; Cabadaj, J.; Kajati, E.; Romero, D.; Landryova, L.; Vascak, J.; Zolotova, I. Augmented Reality for Humans-Robots Interaction in Dynamic Slotting “Chaotic Storage“ Smart Warehouses. In Proceedings of the Advances in Production Management Systems: Production Management for the Factory of the Future, Austin, TX, USA, 1–5 September 2019; pp. 633–641. [Google Scholar]
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Blanco-Novoa, Ó.; Vilar-Montesinos, M.A. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access 2018, 6, 13358–13375. [Google Scholar] [CrossRef]
- Danielsson, O.; Syberfeldt, A.; Holm, M.; Wang, L. Operators perspective on augmented reality as a support tool in engine assembly. In Proceedings of the 51st CIRP Conference on Manufacturing Systems, Stockholm, Sweden, 16–18 May 2018; Volume 72, pp. 45–50. [Google Scholar]
- Rabelo, R.J.; Romero, D.; Zambiasi, S.P. Softbots Supporting the Operator 4.0 at Smart Factory Environments. In Proceedings of the Advances in Production Management Systems: Smart Manufacturing for Industry 4.0, Seoul, Korea, 26–30 August 2018; Volume 536, pp. 456–464. [Google Scholar]
- Makris, S.; Michalos, G.; Chryssolouris, G. Wireless information system for rotating operators in human-based assembly lines. Int. J. Comput. Integr. Manuf. 2015, 28, 1196–1207. [Google Scholar] [CrossRef]
- Mihailidis, A.; Melonis, M.; Keyfitz, R.; Lanning, M.; Van Vuuren, S.; Bodine, C. A nonlinear contextually aware prompting system (N-CAPS) to assist workers with intellectual and developmental disabilities to perform factory assembly tasks: System overview and pilot testing. Disabil. Rehabil. Assist. Technol. 2016, 11, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Gkournelos, C.; Karagiannis, P.; Kousi, N.; Michalos, G.; Koukas, S.; Makris, S. Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Procedia CIRP 2018, 76, 177–182. [Google Scholar] [CrossRef]
- Romero, D.; Mattsson, S.; Fast-Berglund, A.; Wuest, T.; Gorecky, D.; Stahre, J. Digitalizing Occupational Health, Safety and Productivity for the Operator 4.0. In Proceedings of the Advances in Production Management Systems: Smart Manufacturing for Industry 4.0, Seoul, Korea, 26–30 August 2018; Volume 536, pp. 473–481. [Google Scholar]
- Li, D.; Mattsson, S.; Fast-Berglund, A.; Akerman, M. Testing Operator Support Tools for a Global Production Strategy. In Proceedings of the 6th CIRP Conference on Assembly Technologies and Systems (CATS), Gothenburg, Sweden, 16–18 May 2016; Volume 44, pp. 120–125. [Google Scholar]
- Gong, L.; Li, D.; Mattsson, S.; Akerman, M.; Berglund, A.F. The comparison study of different operator support tools for assembly task in the era of global production. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing, Modena, Italy, 27–30 June 2017; Volume 11, pp. 1271–1278. [Google Scholar]
- Zolotova, I.; Papcun, P.; Kajati, E.; Miskuf, M.; Mocnej, J. Smart and cognitive solutions for Operator 4.0: Laboratory H-CPPS case studies. Comput. Ind. Eng. 2020, 139. [Google Scholar] [CrossRef]
- Rauch, E.; Linder, C.; Dallasega, P. Anthropocentric perspective of production before and within Industry 4.0. Comput. Ind. Eng. 2020, 139, 105644. [Google Scholar] [CrossRef]
- Segura, Á.; Diez, H.V.; Barandiaran, I.; Arbelaiz, A.; Álvarez, H.; Simões, B.; Posada, J.; García-Alonso, A.; Ugarte, R. Visual computing technologies to support the Operator 4.0. Comput. Ind. Eng. 2020, 139, 10550. [Google Scholar] [CrossRef]
- Torvatn, H.; Kamsvag, P.; Klove, B. Industry 4.0 Visions and Reality—Status in Norway. In Proceedings of the Advances in Production Management Systems: Towards Smart Production Management Systems, Austin, TX, USA, 1–5 September 2019; pp. 347–354. [Google Scholar]
Search Group | Publications WOS | Publications SCOPUS | Publications Identified after Duplicates Removed |
---|---|---|---|
Assembly and mass customization | 58 | 52 | 97 |
Assembly and KPI | 20 | 19 | 33 |
Assembly and Lean | 81 | 106 | 168 |
Assembly and Industry 4.0 | 47 | 10 | 55 |
Assembly and operator | 83 | 196 | 268 |
Industry 4.0 and Lean | 48 | 8 | 55 |
Industry 4.0 and operator | 33 | 16 | 45 |
Industry 4.0 and mass customization | 17 | 2 | 19 |
Industry 4.0 and KPI | 11 | 2 | 12 |
Lean and mass customization | 14 | 19 | 32 |
Lean and KPI | 31 | 58 | 74 |
Lean and operator | 10 | 33 | 40 |
Operator and mass Mass Customisation | 4 | 15 | 15 |
Operator and KPI | 13 | 98 | 108 |
Mass customization and KPI | 4 | 3 | 5 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Peer-reviewed publications | Book chapters |
Recent: published in 2010 or later | Regarding construction, continuous production (e.g., petrochemical), energy efficiency |
Language: publications in English | Regarding product design |
Regarding mathematical models or algorithms for scheduling, line sequencing, or line balancing |
Industry 4.0 Technologies 1 | Improving Processes and Decisions | Gathering Information on Human Operators | Supporting People in Assembly | Enabling Mass Customisation |
---|---|---|---|---|
Big data | [59] | [60] | ||
IoT | [61,62,63,64] | [65] | [66] | [67] |
Real-time optimization | [68] | [69] | [24] | |
Cloud computing | [70] | |||
Cyber Physical Systems | [71,72] | [67] | ||
Augmented/Virtual Reality | [73,74,75,76,77,78,79,80,81,82] | [83] | ||
Additive manufacturing | [83,84] | |||
digital twin | [85,86,87] | [69] | ||
Other | [88,89] | [49,90,91,92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miqueo, A.; Torralba, M.; Yagüe-Fabra, J.A. Lean Manual Assembly 4.0: A Systematic Review. Appl. Sci. 2020, 10, 8555. https://doi.org/10.3390/app10238555
Miqueo A, Torralba M, Yagüe-Fabra JA. Lean Manual Assembly 4.0: A Systematic Review. Applied Sciences. 2020; 10(23):8555. https://doi.org/10.3390/app10238555
Chicago/Turabian StyleMiqueo, Adrian, Marta Torralba, and José A. Yagüe-Fabra. 2020. "Lean Manual Assembly 4.0: A Systematic Review" Applied Sciences 10, no. 23: 8555. https://doi.org/10.3390/app10238555
APA StyleMiqueo, A., Torralba, M., & Yagüe-Fabra, J. A. (2020). Lean Manual Assembly 4.0: A Systematic Review. Applied Sciences, 10(23), 8555. https://doi.org/10.3390/app10238555