Is My Patient Improving? Individualized Gait Analysis in Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Statement
2.3. Technology and Instrumentation
2.4. Participants
2.5. Variables
2.6. Magnitude-Based Decision (MBD) to Monitor Individuals with Gait Analysis
3. Results
- He increased the StepLgth of both legs (positive).
- The percentage of Double.Supp of both legs decreased considerably. He can now spend more time in mono-pedal support. This could mean more confidence and security (positive).
- He increased his GaitSpeed (positive).
- He decreased his Pelvic.Tilt, resulting in lower energy cost and greater security (positive).
- He increased the Hip.FlexExt of both legs. The asymmetry that already existed increased (negative).
- He reduced the Hip.AbdAdd of both legs. He reduced the movement of the legs in the frontal plane (positive).
4. Discussion
- Improving symmetry is beneficial. A change is positive when the values for the healthy and affected legs are closer in the second session [78].
- Decreasing the Pelvic.Tilt or Chest.Tilt is interpreted as a positive change, as it implies lower energy cost and greater stability [56].
- Increasing the StepLgth is considered to be positive, except if it is due to uncontrolled or involuntary movement [56] (noticeable when StepLgth presents high variability). In this regard, increasing the StepLgth of the healthy leg is particularly positive. In the patients in this study, the StepLgth was usually greater in the affected leg because the affected leg moves to its maximum range when the healthy leg supports the full body weight. Thus, increasing the StepLgth of the healthy leg means that the affected leg is capable of supporting the full body weight over a more extended range.
- Decreasing the percentage of Double.Supp implies that the patient can spend more time in mono-pedal support, which results in increased confidence and security.
- Reducing the Step.Wdth means reducing the base of support, which can be associated with improvement in terms of stability and confidence [56]. However, it is necessary to check whether the change is causing instabilities (i.e., increase in the Pelvic.Tilt or Chest.Tilt).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tyrell, C.M.; Helm, E.; Reisman, D.S. Locomotor Adaptation is Influenced by the Interaction between Perturbation and Baseline Asymmetry After Stroke. J. Biomech. 2015, 48, 2849–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesar, T.M.; Binder-Macleod, S.A.; Hicks, G.E.; Reisman, D.S. Minimal Detectable Change for Gait Variables Collected during Treadmill Walking in Individuals Post-Stroke. Gait Posture 2011, 33, 314–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Locomotor Adaptation on a Split-Belt Treadmill Can Improve Walking Symmetry Post-Stroke. Brain 2007, 130, 1861–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daher, N.; Lee, S.; Yang, Y.J. Effects of Elastic Band Orthosis (Aider) on Balance and Gait in Chronic Stroke Patients. Phys. Ther. Rehabil. Sci. 2013, 2, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Tyrell, C.M.; Roos, M.A.; Rudolph, K.S.; Reisman, D.S. Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke. Phys. Ther. 2011, 91, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Guzik, A.; Drużbicki, M.; Przysada, G.; Brzozowska-Magoń, A.; Wolan-Nieroda, A.; Kwolek, A. An Assessment of the Relationship between the Items of the Observational Wisconsin Gait Scale and the 3-Dimensional Spatiotemporal and Kinematic Parameters in Post-Stroke Gait. Gait Posture 2018, 62, 75–79. [Google Scholar] [CrossRef]
- Marin, J.; Blanco, T.; Marin, J.J.; Moreno, A.; Martitegui, E.; Aragues, J.C. Integrating a Gait Analysis Test in Hospital Rehabilitation: A Service Design Approach. PLoS ONE 2019, 14, e0224409. [Google Scholar] [CrossRef]
- Prakash, C.; Kumar, R.; Mittal, N. Recent Developments in Human Gait Research: Parameters, Approaches, Applications, Machine Learning Techniques, Datasets and Challenges. Artif. Intell. Rev. 2018, 49, 1–40. [Google Scholar] [CrossRef]
- Chambers, H.G.; Sutherland, D.H. A Practical Guide to Gait Analysis. J. Am. Acad. Orthop. Surg. 2002, 10, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Hu, H. Human Motion Tracking for rehabilitation—A Survey. Biomed. Signal Process. Control 2008, 3, 1–18. [Google Scholar] [CrossRef]
- Simon, S.R. Quantification of Human Motion: Gait Analysis—benefits and Limitations to its Application to Clinical Problems. J. Biomech. 2004, 37, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Mueske, N.M.; Õunpuu, S.; Ryan, D.D.; Healy, B.S.; Thomson, J.; Choi, P.; Wren, T.A. Impact of Gait Analysis on Pathology Identification and Surgical Recommendations in Children with Spina Bifida. Gait Posture 2019, 67, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.; Otsuka, N.Y.; Bowen, R.E.; Scaduto, A.A.; Chan, L.S.; Sheng, M.; Hara, R.; Kay, R.M. Influence of Gait Analysis on Decision-Making for Lower Extremity Orthopaedic Surgery: Baseline Data from a Randomized Controlled Trial. Gait Posture 2011, 34, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liao, W. Human Gait Modeling and Analysis using a Semi-Markov Process with Ground Reaction Forces. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Baker, R. Gait Analysis Methods in Rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Marin, J.; Blanco, T.; Marin, J.J. Octopus: A Design Methodology for Motion Capture Wearables. Sensors 2017, 17, 1875. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.; Blanco, T.; de la Torre, J.; Marín, J.J. Gait Analysis in a Box: A System Based on Magnetometer-Free IMUs or Clusters of Optical Markers with Automatic Event Detection. Sensors 2020, 20, 3338. [Google Scholar] [CrossRef]
- Marxreiter, F.; Gaßner, H.; Borozdina, O.; Barth, J.; Kohl, Z.; Schlachetzki, J.C.; Thun-Hohenstein, C.; Volc, D.; Eskofier, B.M.; Winkler, J. Sensor-Based Gait Analysis of Individualized Improvement during Apomorphine Titration in Parkinson’s Disease. J. Neurol. 2018, 265, 2656–2665. [Google Scholar] [CrossRef]
- Ferber, R.; Osis, S.T.; Hicks, J.L.; Delp, S.L. Gait Biomechanics in the Era of Data Science. J. Biomech. 2016, 49, 3759–3761. [Google Scholar] [CrossRef] [Green Version]
- Karg, M.; Seiberl, W.; Kreuzpointner, F.; Haas, J.; Kulić, D. Clinical Gait Analysis: Comparing Explicit State Duration HMMs using a Reference-Based Index. Ieee Trans. Neural Syst. Rehabil. Eng. 2015, 23, 319–331. [Google Scholar] [CrossRef]
- Tyson, S.; Sadeghi-Demneh, E.; Nester, C. A Systematic Review and Meta-Analysis of the Effect of an Ankle-Foot Orthosis on Gait Biomechanics after Stroke. Clin. Rehabil. 2013, 27, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Chon, S. Effect of Whole Body Vibration Training on Mobility in Children with Cerebral Palsy: A Randomized Controlled Experimenter-Blinded Study. Clin. Rehabil. 2013, 27, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Smania, N.; Bonetti, P.; Gandolfi, M.; Cosentino, A.; Waldner, A.; Hesse, S.; Werner, C.; Bisoffi, G.; Geroin, C.; Munari, D. Improved Gait After Repetitive Locomotor Training in Children with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2011, 90, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Hutin, E.; Pradon, D.; Barbier, F.; Gracies, J.; Bussel, B.; Roche, N. Lower Limb Coordination in Hemiparetic Subjects: Impact of Botulinum Toxin Injections into Rectus Femoris. Neurorehabil. Neural Repair 2010, 24, 442–449. [Google Scholar] [CrossRef]
- Hopkins, W.G. Rebranding MBI as Magnitude-Based Decisions (MBD). Sportscience 2019, 23. [Google Scholar]
- Next Generation IMU (NGIMU). Available online: http://x-io.co.uk/ngimu/ (accessed on 21 January 2020).
- Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.; Laureys, S.; Gosseries, O. Spasticity After Stroke: Physiology, Assessment and Treatment. Brain Inj. 2013, 27, 1093–1105. [Google Scholar] [CrossRef]
- Rizzo, M.; Hadjimichael, O.; Preiningerova, J.; Vollmer, T. Prevalence and Treatment of Spasticity Reported by Multiple Sclerosis Patients. Mult. Scler. J. 2004, 10, 589–595. [Google Scholar] [CrossRef]
- Maynard, F.M.; Karunas, R.S.; Waring, W.P., 3rd. Epidemiology of Spasticity Following Traumatic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 1990, 71, 566–569. [Google Scholar]
- Olvey, E.L.; Armstrong, E.P.; Grizzle, A.J. Contemporary Pharmacologic Treatments for Spasticity of the Upper Limb after Stroke: A Systematic Review. Clin. Ther. 2010, 32, 2282–2303. [Google Scholar] [CrossRef]
- Baker, J.A.; Pereira, G. The Efficacy of Botulinum Toxin A for Spasticity and Pain in Adults: A Systematic Review and Meta-Analysis using the Grades of Recommendation, Assessment, Development and Evaluation Approach. Clin. Rehabil. 2013, 27, 1084–1096. [Google Scholar] [CrossRef]
- Vítecková, S.; Horáková, H.; Poláková, K.; Krupicka, R.; Ruzicka, E.; Brozová, H. Agreement between the GAITRite ® System and the Wearable Sensor BTS G-Walk® for Measurement of Gait Parameters in Healthy Adults and Parkinson’s Disease Patients. PeerJ 2020, 8, e8835. [Google Scholar] [CrossRef] [PubMed]
- Kribus-Shmiel, L.; Zeilig, G.; Sokolovski, B.; Plotnik, M. How Many Strides are Required for a Reliable Estimation of Temporal Gait Parameters? Implementation of a New Algorithm on the Phase Coordination Index. PLoS ONE 2018, 13, e0192049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists Rise up against Statistical Significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Peer-Reviewed Journal and Site for Sport Research. Available online: http://www.sportsci.org/.
- Kirk, R.E. Promoting Good Statistical Practices: Some Suggestions. Educ. Psychol. Meas. 2001, 61, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Batterham, A.M.; Hopkins, W.G. Making Meaningful Inferences about Magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Buchheit, M. A Battle Worth Fighting: A Comment on the Vindication of Magnitude-Based Inference. Sportscience 2018, 22, 1–2. [Google Scholar]
- Hopkins, W.; Batterham, A. The Vindication of Magnitude-Based Inference. Sportscience 2018, 22, 19–29. [Google Scholar]
- Hopkins, W. Moving Forward with Magnitude-Based Decisions: Recent Progress. Sportscience 2020, 24, 1–4. [Google Scholar]
- Batterham, A.M.; Hopkins, W.G. The Problems with “the Problem with ‘Magnitude-Based Inference’”. Med. Sci. Sports Exerc. 2019, 51, 599. [Google Scholar] [CrossRef]
- Sainani, K.L. The Problem with “Magnitude-Based Inference”. Med. Sci. Sports Exerc. 2018, 50, 2166–2176. [Google Scholar] [CrossRef]
- Sainani, K.L.; Lohse, K.R.; Jones, P.R.; Vickers, A. Magnitude-based Inference is Not Bayesian and is Not a Valid Method of Inference. Scand. J. Med. Sci. Sports 2019, 29, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of Adding a Weekly Eccentric-Overload Training Session on Strength and Athletic Performance in Team-Handball Players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, J.; Marin, J.; Polo, M.; Marín, J.J. Applying the Minimal Detectable Change of a Static and Dynamic Balance Test using a Portable Stabilometric Platform to Individually Assess Patients with Balance Disorders. Healthcare 2020, 8, 402. [Google Scholar] [CrossRef] [PubMed]
- de Vet, H.C.; Terwee, C.B. The Minimal Detectable Change Should Not Replace the Minimal Important Difference. J. Clin. Epidemiol. 2010, 63, 804. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. The Numbers Will Love You Back in return—I Promise. Int. J. Sports Physiol. Perform. 2016, 11, 551–554. [Google Scholar] [CrossRef]
- Geiger, M.; Supiot, A.; Pradon, D.; Do, M.; Zory, R.; Roche, N. Minimal Detectable Change of Kinematic and Spatiotemporal Parameters in Patients with Chronic Stroke Across Three Sessions of Gait Analysis. Hum. Mov. Sci. 2019, 64, 101–107. [Google Scholar] [CrossRef]
- Almarwani, M.; Perera, S.; VanSwearingen, J.M.; Sparto, P.J.; Brach, J.S. The Test–retest Reliability and Minimal Detectable Change of Spatial and Temporal Gait Variability during Usual Over-Ground Walking for Younger and Older Adults. Gait Posture 2016, 44, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Armada-da-Silva, P.; Pool-Goudaazward, A.; Moniz-Pereira, V.; Veloso, A.P. Three Dimensional Multi-Segmental Trunk Kinematics and Kinetics during Gait: Test-Retest Reliability and Minimal Detectable Change. Gait Posture 2016, 46, 18–25. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Steffen, T.; Seney, M. Test-Retest Reliability and Minimal Detectable Change on Balance and Ambulation Tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in People with Parkinsonism. Phys. Ther. 2008, 88, 733–746. [Google Scholar] [CrossRef]
- Furlan, L.; Sterr, A. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research—A Behavioral Study. Front. Hum. Neurosci. 2018, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Geerinck, A.; Alekna, V.; Beaudart, C.; Bautmans, I.; Cooper, C.; Orlandi, F.D.S.; Konstantynowicz, J.; Montero-Errasquín, B.; Topinková, E.; Tsekoura, M. Standard Error of Measurement and Smallest Detectable Change of the Sarcopenia Quality of Life (SarQoL) Questionnaire: An Analysis of Subjects from 9 Validation Studies. PLoS ONE 2019, 14, e0216065. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Batterham, A.M. Error Rates, Decisive Outcomes and Publication Bias with several Inferential Methods. Sports Med. 2016, 46, 1563–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Lloyd, A.; Bannigan, K.; Sugavanam, T.; Freeman, J. Experiences of Stroke Survivors, their Families and Unpaid Carers in Goal Setting within Stroke Rehabilitation: A Systematic Review of Qualitative Evidence. Jbi Database Syst. Rev. Implement Rep. 2018, 16, 1418–1453. [Google Scholar] [CrossRef] [PubMed]
- Brock, K.; Black, S.; Cotton, S.; Kennedy, G.; Wilson, S.; Sutton, E. Goal Achievement in the Six Months After Inpatient Rehabilitation for Stroke. Disabil. Rehabil. 2009, 31, 880–886. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Spreadsheet to Compare Means of Two Groups. Sportscience 2007, 11, 22–24. [Google Scholar]
- Welch, B.L. The Significance of the Difference between Two Means when the Population Variances Are Unequal. Biometrika 1938, 29, 350–362. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B. Estimation of Sample Size and Power for Comparing Two Means. Fundam. Biostat. 1990, 307–329. [Google Scholar]
- McMurray, J.; McNeil, H.; Lafortune, C.; Black, S.; Prorok, J.; Stolee, P. Measuring Patients’ Experience of Rehabilitation Services Across the Care Continuum. Part I: A Systematic Review of the Literature. Arch. Phys. Med. Rehabil. 2016, 97, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Cloete, T.; Scheffer, C. Repeatability of an Off-the-Shelf, Full Body Inertial Motion Capture System during Clinical Gait Analysis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5125–5128. [Google Scholar]
- Bolink, S.; Naisas, H.; Senden, R.; Essers, H.; Heyligers, I.; Meijer, K.; Grimm, B. Validity of an Inertial Measurement Unit to Assess Pelvic Orientation Angles during Gait, Sit–stand Transfers and Step-Up Transfers: Comparison with an Optoelectronic Motion Capture System. Med. Eng. Phys. 2016, 38, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Cloete, T.; Scheffer, C. Benchmarking of a Full-Body Inertial Motion Capture System for Clinical Gait Analysis. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4579–4582. [Google Scholar]
- Mooney, R.; Corley, G.; Godfrey, A.; Quinlan, L.R.; ÓLaighin, G. Inertial Sensor Technology for Elite Swimming Performance Analysis: A Systematic Review. Sensors 2015, 16, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.; Sheret, I.; McMillian, L.; Siliverdis, K.; Sha, N.; Hodgins, D.; Kenney, L.; Howard, D. Inertial Sensor-Based Knee Flexion/Extension Angle Estimation. J. Biomech. 2009, 42, 2678–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gohary, M.; McNames, J. Human Joint Angle Estimation with Inertial Sensors and Validation with a Robot Arm. IEEE Trans. Biomed. Eng. 2015, 62, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, N.C.; Ambrosini, E.; Pedrocchi, A.; Ferrigno, G.; Monticone, M.; Ferrante, S. A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 413–422. [Google Scholar] [CrossRef]
- Buchheit, M. Magnitudes Matter More than Beetroot Juice. Sport Perform. Sci. Rep. 2018, 15, 1–3. [Google Scholar]
- Fulk, G.D.; Ludwig, M.; Dunning, K.; Golden, S.; Boyne, P.; West, T. Estimating Clinically Important Change in Gait Speed in People with Stroke Undergoing Outpatient Rehabilitation. J. Neurol. Phys. Ther. 2011, 35, 82–89. [Google Scholar] [CrossRef]
- Tilson, J.K.; Sullivan, K.J.; Cen, S.Y.; Rose, D.K.; Koradia, C.H.; Azen, S.P.; Duncan, P.W.; Locomotor Experience Applied Post Stroke (LEAPS) Investigative Team. Meaningful Gait Speed Improvement during the First 60 Days Poststroke: Minimal Clinically Important Difference. Phys. Ther. 2010, 90, 196–208. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Andrews, A.W.; Glenney, S.S. Minimal Clinically Important Difference for Comfortable Speed as a Measure of Gait Performance in Patients Undergoing Inpatient Rehabilitation After Stroke. J. Phys. Ther. Sci. 2013, 25, 1223–1225. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W.; Glenney, S.S. Minimal Clinically Important Difference for Change in Comfortable Gait Speed of Adults with Pathology: A Systematic Review. J. Eval. Clin. Pract. 2014, 20, 295–300. [Google Scholar] [CrossRef]
- Beninato, M.; Portney, L.G. Applying Concepts of Responsiveness to Patient Management in Neurologic Physical Therapy. J. Neurol. Phys. Ther. 2011, 35, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Galli, M. Summary Measures for Clinical Gait Analysis: A Literature Review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait Symmetry Measures: A Review of Current and Prospective Methods. Biomed. Signal Process. Control 2018, 42, 89–100. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Multiple Significance Tests: The Bonferroni Method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perneger, T.V. What’s Wrong with Bonferroni Adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef]
- Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. A Machine Learning Framework for Gait Classification using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients. Sensors 2016, 16, 134. [Google Scholar] [CrossRef] [Green Version]
- Mannini, A.; Genovese, V.; Sabatini, A.M. Online Decoding of Hidden Markov Models for Gait Event Detection using Foot-Mounted Gyroscopes. IEEE J. Biomed. Health Inform. 2013, 18, 1122–1130. [Google Scholar] [CrossRef]
- Liaqat, S.; Dashtipour, K.; Arshad, K.; Ramzan, N. Non Invasive Skin Hydration Level Detection using Machine Learning. Electronics 2020, 9, 1086. [Google Scholar] [CrossRef]
- de la Torre, J.; Marin, J.; Ilarri, S.; Marin, J.J. Applying Machine Learning for Healthcare: A Case Study on Cervical Pain Assessment with Motion Capture. Appl. Sci. 2020, 10, 5942. [Google Scholar] [CrossRef]
Patient | Affected Side | Gender | Days Between | Age | Height (cm) | Abdominal Perimeter (cm) |
---|---|---|---|---|---|---|
S001 | L | M | 28 | 36 | 177 | 108 |
S002 | R | M | 28 | 19 | 170 | 85 |
S003 | R | M | 28 | 44 | 172 | 85 |
S004 | R | F | 26 | 55 | 161 | 115 |
S005 | L | M | 26 | 18 | 164 | 64 |
S006 | R | F | 26 | 32 | 164 | 90 |
S007 | L | F | 33 | 63 | 154 | 106 |
S008 | L | M | 29 | 19 | 173 | 96 |
S009 | R | M | 36 | 60 | 164 | 92 |
S010 | R | F | 50 | 68 | 165 | 92 |
S011 | R | F | 25 | 66 | 157 | 97 |
S012 | R | F | 25 | 57 | 157 | 100 |
S013 | R | M | 25 | 26 | 176 | 79 |
S014 | R | M | 28 | 40 | 187 | 128 |
S015 | L | M | 28 | 59 | 173 | 55 |
S016 | L | F | 28 | 58 | 147 | 79 |
S017 | L | M | 28 | 49 | 174 | 106 |
S018 | L | F | 35 | 49 | 164 | 91 |
S019 | R | F | 28 | 55 | 162 | 82 |
S020 | L | F | 28 | 61 | 154 | 109 |
S021 | L | F | 28 | 48 | 167 | 81 |
Variable | Description | |
---|---|---|
Spatiotemporal Variables | StepLgth (cm) | Distance between feet in the sagittal plane at initial contact |
StepWdth (cm) | Distance between feet in the frontal plane at initial contact | |
FullSupp (%) | Percentage of support throughout the stride length | |
Double.Supp (%) | Percentage of bipedal support throughout the stride length | |
GaitSpeed (cm/s) | Mean of the gait speed throughout the stride length | |
Kinematic Variables (°) | Pelvic.Tilt | Range of Pelvic tilt |
Hip.FlexExt | Range of Hip flexo-extension | |
Hip.AbdAdd | Range of Hip adduction-abduction | |
Knee.FlexExt | Range of Knee flexo-extension | |
Ankle.FlexExt | Range of Ankle flexo-extension | |
Ankle.InvEv | Range of Ankle inversion-eversion | |
Chest.Tilt | Range of chest tilt |
Variables | Mean Pre (SD) | Mean Post (SD) | Xdif (CIdif) | ±δ | N/T/P (%) |
---|---|---|---|---|---|
StepLgth.H (cm) | 24.7 (6.0) | 38.1 (3.1) | 13.4 (2.4) | 2.8 | 0/0/100 |
StepLgth.A (cm) | 32.1 (4.1) | 44.0 (2.9) | 11.9 (1.8) | 1.9 | 0/0/100 |
StepWdth.H (cm) | 23.3 (2.5) | 22.7 (2.2) | −0.7 (1.2) | 1.1 | 22/78/0 |
StepWdth.A (cm) | 27.9 (2.8) | 23.2 (1.5) | −4.7 (1.1) | 1.3 | 100/0/0 |
FullSupp.H (%) | 66.8 (2.8) | 60.6 (4.2) | −6.2 (2.0) | 1.3 | 100/0/0 |
FullSupp.A (%) | 64.9 (4.7) | 64.1 (2.2) | −0.8 (1.8) | 2.2 | 7/93/0 |
DoubleSupp.H (%) | 32.0 (3.3) | 24.0 (2.1) | −8.0 (1.4) | 1.5 | 100/0/0 |
DoubleSupp.A (%) | 31.9 (3.3) | 23.7 (1.8) | −8.3 (1.3) | 1.5 | 100/0/0 |
GaitSpeed (cm/s) | 38.5 (4.4) | 61.8 (11.2) | 23.2 (4.9) | 2.1 | 0/0/100 |
Pelvic.Tilt.H (°) | 5.9 (0.9) | 3.4 (0.6) | −2.5 (0.4) | 0.4 | 100/0/0 |
Pelvic.Tilt.A (°) | 5.7 (0.8) | 3.4 (0.7) | −2.3 (0.4) | 0.4 | 100/0/0 |
Hip.FlexExt.H (°) | 34.4 (1.8) | 43.6 (1.5) | 9.2 (0.9) | 0.8 | 0/0/100 |
Hip.FlexExt.A (°) | 21.1 (4.5) | 25.9 (2.1) | 4.9 (1.7) | 2.1 | 0/0/100 |
Hip.AbdAdd.H (°) | 10.8 (1.4) | 8.5 (1.3) | −2.2 (0.7) | 0.6 | 100/0/0 |
Hip.AbdAdd.A (°) | 10.9 (2.4) | 9.2 (0.9) | −1.7 (0.9) | 1.1 | 92/8/0 |
Knee.FlexExt.H (°) | 32.2 (4.8) | 26.9 (4.1) | −5.3 (2.3) | 2.2 | 100/0/0 |
Knee.FlexExt.A (°) | 29.0 (6.0) | 27.9 (2.1) | −1.1 (2.2) | 2.8 | 6/94/0 |
Ankle.FlexExt.H (°) | 6.9 (5.4) | 7.7 (4.3) | 0.8 (2.5) | 2.5 | 1/91/9 |
Ankle.FlexExt.A (°) | 1.6 (1.1) | 3.7 (0.8) | 2.1 (0.5) | 0.5 | 0/0/100 |
Ankle.InvEv.H (°) | 3.5 (1.8) | 3.8 (2.0) | 0.2 (1.0) | 0.8 | 2/84/14 |
Ankle.InvEv.A (°) | 3.6 (1.3) | 1.0 (0.9) | −2.6 (0.6) | 0.6 | 100/0/0 |
Chest.Tilt.H (°) | 2.8 (1.5) | 1.9 (1.0) | −0.9 (0.7) | 0.7 | 68/32/0 |
Chest.Tilt.A (°) | 2.7 (1.3) | 1.5 (1.1) | −1.2 (0.6) | 0.6 | 96/4/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, J.; Marin, J.J.; Blanco, T.; de la Torre, J.; Salcedo, I.; Martitegui, E. Is My Patient Improving? Individualized Gait Analysis in Rehabilitation. Appl. Sci. 2020, 10, 8558. https://doi.org/10.3390/app10238558
Marin J, Marin JJ, Blanco T, de la Torre J, Salcedo I, Martitegui E. Is My Patient Improving? Individualized Gait Analysis in Rehabilitation. Applied Sciences. 2020; 10(23):8558. https://doi.org/10.3390/app10238558
Chicago/Turabian StyleMarin, Javier, Jose J. Marin, Teresa Blanco, Juan de la Torre, Inmaculada Salcedo, and Elena Martitegui. 2020. "Is My Patient Improving? Individualized Gait Analysis in Rehabilitation" Applied Sciences 10, no. 23: 8558. https://doi.org/10.3390/app10238558
APA StyleMarin, J., Marin, J. J., Blanco, T., de la Torre, J., Salcedo, I., & Martitegui, E. (2020). Is My Patient Improving? Individualized Gait Analysis in Rehabilitation. Applied Sciences, 10(23), 8558. https://doi.org/10.3390/app10238558