Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods: Transducers Design and Fabrication
2.1. Ferroelectret Materials
2.2. Transducer Design and Fabrication Method
2.3. Methods for Transducer Characterization
2.3.1. Preliminary Transducer Verification: Pulse-Echo in Air
2.3.2. Transducer Characterization: Pulse-Echo Measurements in Water Immersion
2.3.3. Transducer Characterization: Acoustic Field Measurements in Water Immersion
2.4. Methods for Radiating Surface Protection
3. Results
3.1. Preliminary Verification of the FE Film Response
3.1.1. Basic Design: Transducers without Surface Protection.
3.1.2. Transducers with a Polymer Coating
3.2. Water Immersion Response in Pulse-Echo Mode
3.2.1. Frequency Domain Response
- Response of transducers made with different FE materials
- Response of focused transducers.
- Response of transducers with different surface protection coatings.
3.2.2. Time Domain Response
- Flat and focused transducers.
- Transducers with coating.
3.2.3. Acoustic Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Savolainen, A.; Kijavainen, K. Electrothermomechanical Film. Part I. Design and Charactcristics. J. Macromol. Sci. A 1989, 26, 583–591. [Google Scholar] [CrossRef]
- Sessler, G.M.; Hillenbrand, J. Electromechanical response of cellular electret films. Appl. Phys. Lett. 1999, 75, 3405–3407. [Google Scholar] [CrossRef]
- Kressmann, R. New Piezoelectric Polymer for Air-Borne and Water-Borne Sound Transducers. J. Acoust. Soc. Am. 2001, 109, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- Bovtun, V.; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y. Ferroelectret Non-Contact Ultrasonic Transducers. Appl. Phys. A Mater. Sci. Process. 2007, 88, 737–743. [Google Scholar] [CrossRef]
- Ealo, J.L.; Seco, F.; Jimenez, A.R. Broadband EMFi-based transducers for ultrasonic air applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Arenas, T.E.G. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers. Sensors 2013, 13, 5996–6013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Arenas, T.E.G.; Diez, L. Ferroelectret transducers for water immersion and medical imaging. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Tours, France, 18–21 September 2016. [Google Scholar] [CrossRef]
- Aguilar, J.Q.; Alvarez-Arenas, T.E.G. Optimization of Ferroelectret Transducers for Pulse-Echo Water Immersion Operation. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2604–2607. [Google Scholar] [CrossRef]
- Álvarez-Arenas, T.E.G.; Calás, H.; Cuello, J.E.; Fernández, A.R.; Muñoz, M. Noncontact ultrasonic spectroscopy applied to the study of polypropylene ferroelectrets. J. Appl. Phys. 2010, 108, 074110. [Google Scholar] [CrossRef]
- Quirce, J.; Muñoz, M.; Alvarez-Arenas, T.E.G. Interpretation of the thickness resonances in ferroelectret films based on a layered sandwich mesostructure and a cellular microstructure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Arenas, T.E.G. Acoustic impedance matching of piezoelectric transducers to the air. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 624–633. [Google Scholar] [CrossRef]
- Alvarez-Arenas, T.E.G.; Diez, L. Novel impedance matching materials and strategies for air-coupled piezoelectric transducers. In Proceedings of the 2013 IEEE SENSORS 2013-Proc, Baltimore, MD, USA, 3–6 November 2013. [Google Scholar] [CrossRef]
- Ealo Cuello, J.L. Transductores Basados en Ferroelectretos para Aplicaciones Ultrasónicas en Aire. Ph.D. Thesis, University Politécnica de Madrid, Madrid, Spain, 14 December 2009. [Google Scholar]
- Tang, J.; Tong, L.; Xiang, Y.; Qiu, X.; Deng, M.; Xuan, F. Design, fabrication and characterization of Emfi-based ferroelectret air-coupled ultrasonic transducer. Sens. Actuators A Phys. 2019, 296, 52–60. [Google Scholar] [CrossRef]
- Bovtun, V.; Döring, J.; Bartusch, J.; Gaal, M.; Erhard, E.; Kreutzbruck, M.; Yakymenko, Y. Enhanced electromechanical response of ferroelectret ultrasonic transducers under high voltage excitation. Adv. Appl. Ceram. 2013, 112, 97–102. [Google Scholar] [CrossRef]
- Svilainis, L.; Rodriguez-Martinez, A.; Chaziachmetovas, A.; Aleksandrovas, A. Ultrasound Transmission Spectral Compensation Using Arbitrary Position and Width Pulse Sets. IEEE Trans. Instrum. Meas. 2018, 67, 1778–1785. [Google Scholar] [CrossRef]
Material | Thickness (μm) | Density (kg/m3) | λ/2 Resonant Frequency, Thickness Mode (MHz) | Impedance (MRayl) |
---|---|---|---|---|
HS03 | 70 | 530 | 0.638 | 0.046 |
HS06 | 90 | 370 | 1.120 | 0.065 |
Material | Density (kg/m3) | Ultrasound Velocity (m/s) | Acoustic Impedance (MRayl) | Coating Method |
---|---|---|---|---|
PMMA | 1150 | 2700 | 3.11 | Spin coating |
PTFE | 2200 | 1400 | 3.10 | Spray coating |
Varnish | 950 ** | 1800 * | 0.95 | Spray coating |
Acrylic Lacquer | 800 ** | 1800 * | 0.88 | Spray coating |
Coating | λ/4 Resonance (kHz) | Relative Variation (%) | Estimated Coating Thickness (μm) | |
---|---|---|---|---|
Before Coating | After Coating | |||
PMMA | 285.6 | 283.2 | 0.85 | 0.3 |
PTFE | 290.5 | 288.0 | 0.84 | 0.15 |
Varnish | 280.8 | 200.2 | 28.7 | 25 |
Lacquer | 285.0 | 200.0 | 29.8 | 26 |
Transducer (Radius Curvature) | Measured Center Frequency | Measured Focal Distance | Beam Width at Focus | |
---|---|---|---|---|
Theoretical | Measured | |||
22 mm | 1.30 MHz | 19 mm | 1.67 mm | 1.8 mm |
35 mm | 1.20 MHz | 32 mm | 2.88 mm | 3.7 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirce, J.; Svilainis, L.; Camacho, J.; Gomez Alvarez-Arenas, T. Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion. Appl. Sci. 2020, 10, 8771. https://doi.org/10.3390/app10248771
Quirce J, Svilainis L, Camacho J, Gomez Alvarez-Arenas T. Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion. Applied Sciences. 2020; 10(24):8771. https://doi.org/10.3390/app10248771
Chicago/Turabian StyleQuirce, Julio, Linas Svilainis, Jorge Camacho, and Tomas Gomez Alvarez-Arenas. 2020. "Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion" Applied Sciences 10, no. 24: 8771. https://doi.org/10.3390/app10248771
APA StyleQuirce, J., Svilainis, L., Camacho, J., & Gomez Alvarez-Arenas, T. (2020). Ferroelectret Ultrasonic Transducers for Pulse-Echo Water Immersion. Applied Sciences, 10(24), 8771. https://doi.org/10.3390/app10248771