Valorization Potential of Oilseed Cakes by Subcritical Water Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Subcritical Water Treatment
2.3. Chemicals
2.4. Determination of Extraction Yield
2.5. Determination of Total Lipid Content
2.6. Determination of Total Protein Content
2.7. Determination of Ca, K, Na and P
2.8. Amino Acid Composition Analysis
2.9. Quality Control
3. Results
3.1. Extraction Yield
3.2. Total Lipid and Protein Content
3.3. Mineral Content
3.4. Amino acid Composition Analysis
4. Discussion
4.1. Extraction Yield
4.2. Total Lipid and Protein Content
4.3. Mineral Contents
4.4. Amino Acid Composition
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grudniewska, A.; de Melo, E.M.; Chan, A.; Gniłka, R.; Boratyński, F.; Matharu, A.S. Enhanced Protein Extraction from Oilseed Cakes Using Glycerol-Choline Chloride Deep Eutectic Solvents: A Biorefinery Approach. ACS Sustain. Chem. Eng. 2018, 6, 15791–15800. [Google Scholar] [CrossRef]
- Teh, S.S.; Bekhit, A.D. Utilization of Oilseed Cakes for Human Nutrition and Health Benefits. In Agricultural Biomass Based Potential Materials, 1st ed.; Hakeem, K., Jawaid, M., Alothman, O., Eds.; Springer: Cham, Switzerland, 2015; pp. 191–229. [Google Scholar]
- Radha, C.; Kumar, P.R.; Prakash, V. Preparation and characterization of a protein hydrolysate from an oilseed flour mixture. Food Chem. 2007, 106, 1166–1174. [Google Scholar] [CrossRef]
- Yao, G.L.; He, W.; Wu, Y.G.; Chen, J.; Hu, J.W.; Yu, J. Structure and functional properties of protein from defatted Camellia oleifera seed cake: Effect of hydrogen peroxide decolorization. Int. J. Food Prop. 2019, 22, 1283–1295. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Sharma, A.; Pathak, R.; Kumar, A.; Sharma, S. Solid State Fermentation of Non-Edible Oil Seed Cakes for Production of Proteases and Cellulases and Degradation of Anti- Nutritional Factors. J. Food Biotechnol. Res. 2018, 2, 1–6. [Google Scholar]
- Abu Yazid, N.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for OrganicWaste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, R.; Nyogi, U.K.; Tyagi, A.K. Methods of detoxification of Jatropha curcas L. seed cake for its use as protein supplement in animal feed-an overview. Indian J. Nat. Prod. Res. 2015, 6, 176–182. [Google Scholar]
- Švarc-Gajić, J. Sampling and Sample Preparation in Analytical Chemistry, 1st ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 113–115. [Google Scholar]
- Galkin, A.; Lunin, V. Subcritical and supercritical water: A universal medium for chemical reactions. Russ. Chem. Rev. 2005, 74, 21–35. [Google Scholar] [CrossRef]
- Balan, V.; Rogers, C.; Chundawat, S.; da Costa Sousa, L.; Slininger, P.; Gupta, R.; Dale, B. Conversion of Extracted Oil Cake Fibers into Bioethanol Including DDGS, Canola, Sunflower, Sesame, Soy, and Peanut for Integrated Biodiesel Processing. J. Am. Oil Chem. Soc. 2009, 86, 157–165. [Google Scholar] [CrossRef]
- Bodoira, R.; Velez, A.; Maestri, D.; Herrera, J. Bioactive Compounds Obtained from Oilseed By‑Products with Subcritical Fluids: Effects on Fusarium verticillioides Growth. Waste Biomass Valor. 2020, 11, 5913–5924. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Linares, I.B.; Mašković, P. Characterisation of ginger extracts obtained by subcritical water. J. Supercrit. Fluids 2017, 123, 92–100. [Google Scholar] [CrossRef]
- Pharmacopoea Jugoslavica, Ph. Jug.IV; Savezni Zavod za Zdravstvenu Zaštitu: Beograd, Serbia, 1984; Volume 2, p. 36.
- Malmer, M.F.; Schroeder, L.A. Amino acid analysis by high-performance liquid chromatography with methanesulfonic acid hydrolysis and 9-fluorenylmethylchloroformate derivatization. J. Chrom. A 1990, 514, 227–239. [Google Scholar] [CrossRef]
- Heems, D.; Luck, G.; Fraudeau, C.; Verette, E. Fully automated precolumn derivatization, on-line dialysis and high-performance liquid chromatographic analysis of amino acids in food, beverages and feedstuff. J. Chrom. A 1998, 798, 9–17. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-Teles, M.T.; Carvalho, A.P.; Domingues, V.F.; Antunes, F.; Oliveira, T.A.C.; et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, G. Near critical and supercritical water. Part, I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 2009, 47, 373–381. [Google Scholar] [CrossRef]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon 2019, 5, e02005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, T.; Bowra, S.; Cooper, H.J. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion. Anal. Chem. 2016, 88, 6425–6432. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhu, C.; Zhao, L.; Cheng, H. Amino Acids Production from Fish Proteins Hydrolysis in Subcritical Water. Chin. J. Chem.Eng. 2015, 16, 456–460. [Google Scholar] [CrossRef]
- Uddin, S.; Ahn, H.M.; Kishimura, H.; Chun, B.S. Production of valued materials from squid viscera by subcritical water hydrolysis. J. Enriron. Biol. 2010, 31, 675–679. [Google Scholar]
- Pourali, O.; Asghari, F.S.; Yoshida, H. Sub-critical water treatment of rice bran to produce valuable materials. Food Chem. 2009, 115, 1–7. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Koh, B.B.; Davaatseren, M.; Hong, G.P. Characterization of soy protein hydrolysates produced by varying subcritical water processing temperature. Innov. Food Sci. Emerg. Technol. 2017, 43, 201–206. [Google Scholar] [CrossRef]
- Švarc-Gajić, J. General Toxicology, 1st ed.; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; p. 98. [Google Scholar]
- Farquhar, W.B.; Edwards, D.G.; Jurkovitz, C.T.; Weintraub, W.S. Dietary sodium and health: More than just blood pressure. J. Am. Coll. Cardiol. 2015, 65, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Pravina, P.; Sayaji, D.; Avinash, M. Calcium and its Role in Human Body. Int. J. Res. Pharm. Biomed. Sci. 2013, 4, 659–668. [Google Scholar]
- Heaney, R.P. Phosphorus. In Present Knowledge in Nutrition, 10th ed.; Erdman, J.W., Jr., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley-Blackwell: Ames, IA, USA, 2012; pp. 447–458. [Google Scholar]
- Sunil, L.; Appaiah, P.; Kumar, P.; Krishna, A.G. Preparation of food supplements from oilseed cakes. J. Food Sci. Technol. 2015, 52, 2998–3005. [Google Scholar] [CrossRef] [Green Version]
- Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral Composition of Subcritical Water Extracts of Saccorhiza polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. J. Marine Sci. Eng. 2020, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Then, M.; Szentmihalyi, K.; Sarkozi, A.; Illes, V.; Forgacs, E. Effect of sample handling on alkaloid and mineral content of aqueous extracts of greater celandine (Chelidonium majus L.). J. Chromat. A 2000, 889, 69–74. [Google Scholar] [CrossRef]
- Marcet, I.; Álvarez, C.; Paredes, B.; Díaz, M. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manag. 2016, 49, 364–371. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Aluko, R.E. In vitro antioxidant properties of Hemp seed (Cannabis sativa Linn.) protein hydrolysate fractions. J. Am. Oil Chem. Soc. 2011, 88, 381–389. [Google Scholar] [CrossRef]
- Panaite, T.; Ropota, M.; Turcu, R.; Olteanu, M.; Corbu, A.R.; Nour, V. Flaxseeds: Nutritional potential and bioactive compounds. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2017, 74, 65–73. [Google Scholar]
Sample | Atmosphere | EY (%) | Total lipid Content (g/100 g Dry Extract) | Total Protein Content (g/100 g Dry Extract) |
---|---|---|---|---|
N2 | 57.51 ± 0.19 | 28.54 ± 0.18 | 1.94 ± 0.04 | |
Pumpkin | N2 + 0.05 mol/L HCl | 60.10 ± 0.18 | 48.55 ± 0.23 | 3.14 ± 0.06 |
CO2 | 57.13 ± 0.19 | 38.87 ± 0.22 | 4.87 ± 0.08 | |
N2 | 42.07 ± 0.18 | 10.10 ± 0.21 | 4.83 ± 0.06 | |
Hemp | N2 + 0.05 mol/L HCl | 40.45 ± 0.18 | 50.75 ± 0.21 | 6.59 ± 0.09 |
CO2 | 44.23 ± 0.17 | 32.04 ± 0.18 | 6.83 ± 0.09 | |
N2 | 50.33 ± 0.18 | 6.97 ± 0.10 | 1.30 ± 0.01 | |
Flax | N2 + 0.05 mol/L HCl | 53.02 ± 0.15 | 32.87 ± 0.18 | 2.52 ± 0.02 |
CO2 | 51.73 ± 0.17 | 23.49 ± 0.17 | 2.84 ± 0.03 |
Sample | K (mg/100 g) | Na (mg/100 g) | Ca (mg/100 g) | P (mg/100 g) |
---|---|---|---|---|
Pumpkin 1 1 | 24.89 ± 0.13 | 0.46 ± 0.03 | 3.72 ± 0.06 | 2.29 ± 0.03 |
Pumpkin 2 | 24.59 ± 0.13 | 0.65 ± 0.03 | 5.26 ± 0.03 | 2.45 ± 0.02 |
Pumpkin 3 | 27.90 ± 0.11 | 1.53 ± 0.06 | 6.45 ± 0.05 | 2.36 ± 0.02 |
Average ± 2 SD | 25.79 ± 0.12 | 0.88 ± 0.04 | 5.14 ± 0.05 | 2.37 ± 0.02 |
Hemp 1 | 49.01 ± 0.11 | 2.14 ± 0.09 | 6.03 ± 0.04 | 4.05 ± 0.02 |
Hemp 2 | 52.50 ± 0.11 | 2.87 ± 0.08 | 7.86 ± 0.08 | 4.21 ± 0.02 |
Hemp 3 | 48.73 ± 0.12 | 3.35 ± 0.04 | 7.97 ± 0.09 | 4.53 ± 0.03 |
Average ± 2 SD | 50.08 ± 0.11 | 2.78 ± 0.07 | 7.29 ± 0.07 | 4.27 ± 0.02 |
Flax 1 | 49.01 ± 0.10 | 6.16 ± 0.05 | 5.05 ± 0.07 | 1.81 ± 0.01 |
Flax 2 | 57.09 ± 0.10 | 3.72 ± 0.08 | 10.19 ± 0.11 | 1.99 ± 0.01 |
Flax 3 | 38.05 ± 0.12 | 4.71 ± 0.07 | 8.81 ± 0.09 | 2.05 ± 0.02 |
Average ± 2 SD | 48.05 ± 0.11 | 4.86 ± 0.07 | 8.02 ± 0.09 | 1.95 ± 0.01 |
AA | Pumpkin 1 1 | Pumpkin 2 | Pumpkin 3 | Hemp 1 | Hemp 2 | Hemp 3 | Flax 1 | Flax 2 | Flax 3 |
---|---|---|---|---|---|---|---|---|---|
Asp # | 0.06 ± < 0.01 | 0.53 ± 0.02 | 4.43 ± 0.12 | 49.17 ± 1.26 | 70.45 ± 0.87 | 72.67 ± 0.14 | 3.81 ± 0.27 | 6.12 ± 0.45 | 5.00 ± 0.34 |
Glu # | 2.50 ± 0.14 | 5.40 ± 0.08 | 7.34 ± 0.15 | 44.58 ± 0.14 | 41.98 ± 0.05 | 77.86 ± 0.19 | 3.03 ± 0.08 | 6.53 ± 0.14 | 5.88 ± 0.15 |
Ser | 0.10 ± < 0.01 | 0.19 ± < 0.01 | 0.63 ± < 0.01 | 15.84 ± 0.46 | 19.70 ± 0.02 | 26.50 ± 0.02 | 0.96 ± 0.03 | 2.14 ± 0.10 | 3.83 ± 0.05 |
Thr• | 1.01 ± 0.03 | 1.54 ± 0.05 | 5.11 ± 0.01 | 8.94 ± 0.02 | 28.34 ± 0.01 | 34.70 ± 0.12 | 1.18 ± 0.06 | 2.32 ± 0.05 | 4.09 ± 0.08 |
His• | 0.81 ± 0.02 | 1.44 ± 0.06 | 5.55 ± 0.03 | 6.09 ± 0.08 | 13.38 ± 0.01 | 20.94 ± 0.01 | 0.77 ± 0.04 | 1.79 ± 0.02 | 2.63 ± 0.05 |
Gly # | 0.50 ± < 0.01 | 1.00 ± 0.02 | 4.82 ± 0.02 | 0.02 ± < 0.01 | 0.07 ± < 0.01 | 0.20 ± < 0.01 | 0.73 ± 0.02 | 4.71 ± 0.06 | 6.08 ± 0.05 |
Gln | 0.74 ± 0.01 | 1.19 ± 0.01 | 5.31 ± 0.04 | 0.05 ± < 0.01 | 0.99 ± < 0.01 | 2.60 ± 0.01 | 0.70 ± 0.01 | 1.69 ± 0.01 | 2.87 ± 0.01 |
Asn | 0.01 ± < 0.01 | 0.03 ± < 0.01 | 0.15 ± < 0.01 | 1.35 ± < 0.01 | 0.53 ± < 0.01 | 0.55 ± < 0.01 | 0.01 ± < 0.01 | 0.08 ± < 0.01 | 0.71 ± 0.01 |
Arg• | 0.99 ± 0.03 | 1.73 ± 0.03 | 3.69 ± 0.04 | 39.27 ± 0.26 | 85.14 ± 1.03 | 89.01 ± 0.05 | 0.92 ± 0.08 | 3.58 ± 0.11 | 5.17 ± 0.07 |
Ala# | 0.31 ± 0.03 | 0.97 ± 0.02 | 2.09 ± 0.01 | 10.77 ± 0.08 | 15.82 ± 0.03 | 17.83 ± 0.01 | 0.20 ± 0.02 | 0.76 ± 0.02 | 1.28 ± 0.02 |
Tyr | 0.81 ± 0.04 | 1.38 ± 0.02 | 3.18 ± 0.01 | 1.50 ± 0.01 | 1.05 ± < 0.01 | 2.73 ± 0.01 | 0.82 ± 0.03 | 1.92 ± 0.01 | 4.86 ± 0.01 |
Lys• | 4.81 ± 0.04 | 7.66 ± 0.05 | 12.37 ± 0.10 | 10.68 ± 0.14 | 15.88 ± 0.04 | 16.46 ± 0.01 | 0.94 ± 0.02 | 2.12 ± 0.04 | 2.78 ± 0.03 |
Val• | 1.80 ± 0.01 | 0.47 ± 0.01 | 1.54 ± 0.02 | 2.85 ± 0.04 | 5.54 ± 0.02 | 4.10 ± 0.01 | 0.26 ± 0.01 | 0.35 ± < 0.01 | 1.79 ± 0.02 |
Met• | 0.76 ± 0.01 | 0.32 ± 0.02 | 1.87 ± < 0.01 | 1.35 ± 0.05 | 0.99 ± 0.01 | 0.20 ± < 0.01 | 0.74 ± 0.05 | 1.76 ± 0.02 | 3.52 ± 0.01 |
Trp• | 0.17 ± < 0.01 | 0.41 ± < 0.01 | 1.02 ± < 0.01 | 0.29 ± < 0.01 | 0.46 ± < 0.01 | 0.48 ± < 0.01 | 0.23 ± < 0.01 | 0.86 ± < 0.01 | 1.25 ± 0.03 |
Phe• | 1.20 ± 0.01 | 2.14 ± 0.03 | 3.01 ± 0.01 | 1.93 ± 0.01 | 1.85 ± 0.01 | 3.35 ± 0.01 | 1.21 ± 0.01 | 2.49 ± 0.03 | 2.95 ± 0.01 |
Ile• | 0.64 ± 0.04 | 1.07 ± 0.04 | 2.78 ± 0.05 | 4.30 ± < 0.01 | 6.66 ± 0.02 | 7.31 ± 0.02 | 0.85 ± 0.04 | 1.97 ± 0.01 | 2.19 ± 0.02 |
Leu• | 0.74 ± 0.05 | 1.26 ± 0.08 | 5.41 ± 0.06 | 13.19 ± 0.08 | 9.62 ± 0.05 | 24.18 ± 0.03 | 1.18 ± 0.03 | 2.87 ± 0.05 | 5.31 ± 0.07 |
Hyp | 0.37 ± 0.02 | 0.94 ± 0.01 | 2.82 ± 0.03 | 0.63 ± < 0.01 | 0.46 ± < 0.01 | 1.37 ± 0.02 | 0.20 ± 0.01 | 0.73 ± 0.02 | 1.48 ± 0.01 |
Pro | 2.07 ± 0.02 | 1.89 ± 0.02 | 1.96 ± 0.05 | 6.71 ± 0.01 | 3.10 ± < 0.01 | 6.49 ± 0.05 | 0.10 ± < 0.01 | 1.26 ± 0.03 | 1.56 ± 0.02 |
Σ AA | 20.40 ± 0.58 | 32.56 ± 0.77 | 75.09 ± 2.91 | 219.50 ± 1.55 | 321.99 ± 1.05 | 409.51 ± 1.12 | 18.84 ± 0.59 | 46.04 ± 1.01 | 65.23 ± 0.65 |
% EAA• | 58.58 ± 0.45 | 53.13 ± 1.02 | 51.49 ± 0.47 | 22.60 ± 0.58 | 25.69 ± 0.89 | 27.28 ± 0.54 | 39.06 ± 0.20 | 35.91 ± 0.79 | 40.66 ± 0.74 |
% FAA # | 16.56 ± 0.75 | 24.30 ± 0.52 | 24.88 ± 0.42 | 47.63 ± 0.50 | 39.85 ± 0.89 | 41.16 ± 0.74 | 41.20 ± 0.38 | 39.35 ± 0.40 | 27.95 ± 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C.; Vieira, E.F.; Spigno, G. Valorization Potential of Oilseed Cakes by Subcritical Water Extraction. Appl. Sci. 2020, 10, 8815. https://doi.org/10.3390/app10248815
Švarc-Gajić J, Morais S, Delerue-Matos C, Vieira EF, Spigno G. Valorization Potential of Oilseed Cakes by Subcritical Water Extraction. Applied Sciences. 2020; 10(24):8815. https://doi.org/10.3390/app10248815
Chicago/Turabian StyleŠvarc-Gajić, Jaroslava, Simone Morais, Cristina Delerue-Matos, Elsa F. Vieira, and Giorgia Spigno. 2020. "Valorization Potential of Oilseed Cakes by Subcritical Water Extraction" Applied Sciences 10, no. 24: 8815. https://doi.org/10.3390/app10248815
APA StyleŠvarc-Gajić, J., Morais, S., Delerue-Matos, C., Vieira, E. F., & Spigno, G. (2020). Valorization Potential of Oilseed Cakes by Subcritical Water Extraction. Applied Sciences, 10(24), 8815. https://doi.org/10.3390/app10248815