Duty Factor Reflects Lower Limb Kinematics of Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Running Gait Classification
2.4. Data Collection
2.5. Biomechanical Parameters
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics between DFhigh and DFlow Groups
3.2. Temporal Characteristics and Center of Mass Displacement
3.3. Hip, Knee, and Ankle Joint Angles
3.4. Pelvis and Foot Segment Angles
3.5. Running Wheel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cavanagh, P.R.; Williams, K.R. The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 1982, 14, 30–35. [Google Scholar] [CrossRef]
- Connick, M.J.; Li, F.-X. Changes in timing of muscle contractions and running economy with altered stride pattern during running. Gait Posture 2014, 39, 634–637. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, C.J.; Verdijk, P.W.L.; Werker, W.; Zuidema, M.J.; de Haan, A. Stride frequency in relation to oxygen consumption in experienced and novice runners. Eur. J. Sport Sci. 2014, 14, 251–258. [Google Scholar] [CrossRef]
- Högberg, P. How do stride length and stride frequency influence the energy-output during running? Arbeitsphysiologie 1952, 14, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Hunter, I.; Smith, G.A. Preferred and optimal stride frequency, stiffness and economy: Changes with fatigue during a 1-h high-intensity run. Eur. J. Appl. Physiol. 2007, 100, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Martin, P.; Craib, M.; Caruso, C.; Clifton, R.; Hopewell, R. Effect of step length optimization on the aerobic demand of running. J. Appl. Physiol. Bethesda 1994, 77, 245–251. [Google Scholar] [CrossRef]
- Van Oeveren, B.T.; de Ruiter, C.J.; Beek, P.J.; van Dieën, J.H. Optimal stride frequencies in running at different speeds. PLoS ONE 2017, 12, e0184273. [Google Scholar] [CrossRef]
- Moore, I.S.; Ashford, K.J.; Cross, C.; Hope, J.; Jones, H.S.R.; McCarthy-Ryan, M. Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Front. Sports Act. Living 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.R.; Cavanagh, P.R. Relationship between distance running mechanics, running economy, and performance. J. Appl. Physiol. Bethesda 1987, 63, 1236–1245. [Google Scholar] [CrossRef]
- Moore, I.S.; Jones, A.M.; Dixon, S.J. Mechanisms for improved running economy in beginner runners. Med. Sci. Sports Exerc. 2012, 44, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.S.; Jones, A.M.; Dixon, S.J. Reduced oxygen cost of running is related to alignment of the resultant GRF and leg axis vector: A pilot study. Scand. J. Med. Sci. Sports 2016, 26, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.R. Biomechanical factors contributing to marathon race success. Sports Med. 2007, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Hoerzer, S.; von Tscharner, V.; Jacob, C.; Nigg, B.M. Defining functional groups based on running kinematics using self-organizing maps and support vector machines. J. Biomech. 2015, 48, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Osis, S.; Hettinga, B.A.; Ferber, R. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis. J. Biomech. 2015, 48, 3897–3904. [Google Scholar] [CrossRef]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Mourot, L. Aerial and Terrestrial patterns: A novel approach to analyzing human running. Int. J. Sports Med. 2016, 37, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Lussiana, T.; Gindre, C.; Mourot, L.; Hébert-Losier, K. Do subjective assessments of running patterns reflect objective parameters? Eur. J. Sport Sci. 2017, 17, 847–857. [Google Scholar] [CrossRef]
- Lussiana, T.; Patoz, A.; Gindre, C.; Mourot, L.; Hébert-Losier, K. The implications of time on the ground on running economy: Less is not always better. J. Exp. Biol. 2019, 222. [Google Scholar] [CrossRef] [Green Version]
- Patoz, A.; Gindre, C.; Thouvenot, A.; Mourot, L.; Hébert-Losier, K.; Lussiana, T. Duty factor is a viable measure to classify spontaneous running forms. Sports 2019, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Lussiana, T.; Gindre, C.; Hébert-Losier, K.; Sagawa, Y.; Gimenez, P.; Mourot, L. Similar running economy with different running patterns along the aerial-terrestrial continuum. Int. J. Sports Physiol. Perform. 2017, 12, 481–489. [Google Scholar] [CrossRef]
- Forrester, S.E.; Townend, J. The effect of running velocity on footstrike angle-a curve-clustering approach. Gait Posture 2015, 41, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Craighead, D.H.; Lehecka, N.; King, D.L. A novel running mechanic’s class changes kinematics but not running economy. J. Strength Cond. Res. 2014, 28, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; Gruber, A.H. Is changing footstrike pattern beneficial to runners? J. Sport Health Sci. 2017, 6, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Ekizos, A.; Santuz, A.; Arampatzis, A. Short- and long-term effects of altered point of ground reaction force application on human running energetics. J. Exp. Biol. 2018, 221, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Derrick, T.R.; Hamill, J.; Caldwell, G.E. Energy absorption of impacts during running at various stride lengths. Med. Sci. Sports Exerc. 1998, 30, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Laughton, C.A.; Davis, I.; Hamill, J. Effect of strike pattern and orthotic intervention on tibial shock during running. J. Appl. Biomech. 2003, 19, 153–168. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Lafortune, M.A. Ground reaction forces in distance running. J. Biomech. 1980, 13, 397–406. [Google Scholar] [CrossRef]
- Dickinson, J.A.; Cook, S.D.; Leinhardt, T.M. The measurement of shock waves following heel strike while running. J. Biomech. 1985, 18, 415–422. [Google Scholar] [CrossRef]
- Munro, C.F.; Miller, D.I.; Fuglevand, A.J. Ground reaction forces in running: A reexamination. J. Biomech. 1987, 20, 147–155. [Google Scholar] [CrossRef]
- Nigg, B.M.; Cole, G.K.; Brüggemann, G.-P. Impact forces during heel-toe running. J. Appl. Biomech. 1995, 11, 407–432. [Google Scholar] [CrossRef] [Green Version]
- Derrick, T.R.; Knight, C.; Heiderscheit, B.; Hamill, J. Spectral decomposition of vertical ground reaction force curves. ISBS Conf. Proc. Arch. 1996. [Google Scholar]
- Nigg, B.M.; Wakeling, J.M. Impact forces and muscle tuning: A new paradigm. Exerc. Sport Sci. Rev. 2001, 29, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Breine, B.; Malcolm, P.; Segers, V.; Gerlo, J.; Derie, R.; Pataky, T.; Frederick, E.C.; De Clercq, D. Magnitude and spatial distribution of impact intensity under the foot relates to initial foot contact pattern. J. Appl. Biomech. 2017, 33, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Breine, B.; Malcolm, P.; Van Caekenberghe, I.; Fiers, P.; Frederick, E.C.; De Clercq, D. Initial foot contact and related kinematics affect impact loading rate in running. J. Sports Sci. 2017, 35, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamill, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci. 2014, 3, 113–121. [Google Scholar] [CrossRef]
- Gruber, A.H.; Davis, I.S.; Hamill, J. Frequency content of the vertical ground reaction force component during rearfoot and forefoot running patterns. Med. Sci. Sports Exerc. 2011, 43, 60. [Google Scholar] [CrossRef]
- Breine, B.; Malcolm, P.; Galle, S.; Fiers, P.; Frederick, E.C.; De Clercq, D. Running speed-induced changes in foot contact pattern influence impact loading rate. Eur. J. Sport Sci. 2019, 19, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, K.G.; van den Bogert, A.J.; Nigg, B.M. Direct dynamics simulation of the impact phase in heel-toe running. J. Biomech. 1995, 28, 661–668. [Google Scholar] [CrossRef]
- Pratt, D.J. Mechanisms of shock attenuation via the lower extremity during running. Clin. Biomech. 1989, 4, 51–57. [Google Scholar] [CrossRef]
- Williams, D.S.; McClay, I.S.; Manal, K.T. Lower extremity mechanics in runners with a converted forefoot strike pattern. J. Appl. Biomech. 2000, 16, 210–218. [Google Scholar] [CrossRef]
- Knorz, S.; Kluge, F.; Gelse, K.; Schulz-Drost, S.; Hotfiel, T.; Lochmann, M.; Eskofier, B.; Krinner, S. Three-dimensional biomechanical analysis of rearfoot and forefoot running. Orthop. J. Sports Med. 2017, 5, 2325967117719065. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Y.; Wang, L.; Zhang, X.; Fu, W. Do strike patterns or shoe conditions have a predominant influence on foot loading? J. Hum. Kinet. 2018, 64, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, L.M.; Bonanno, D.R.; Hart, H.F.; Barton, C.J. What are the benefits and risks associated with changing foot strike pattern during running? A systematic review and meta-analysis of injury, running economy, and biomechanics. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.O.; Davis, I.S.; Lopes, A.D. Biomechanical differences of foot-strike patterns during running: A systematic review with meta-analysis. J. Orthop. Sports Phys. Ther. 2015, 45, 738–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ó’Catháin, C.P.; Richter, C.; Moran, K. Can directed compliant running reduce the magnitude of variables associated with the development of running injuries? J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- McMahon, T.A.; Valiant, G.; Frederick, E.C. Groucho running. J. Appl. Physiol. 1987, 62, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Arendse, R.E.; Noakes, T.D.; Azevedo, L.B.; Romanov, N.; Schwellnus, M.P.; Fletcher, G. Reduced eccentric loading of the knee with the pose running method. Med. Sci. Sports Exerc. 2004, 36, 272–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranberg, R.; Saari, T.; Zügner, R.; Kärrholm, J. Simultaneous measurements of knee motion using an optical tracking system and radiostereometric analysis (RSA). Acta Orthop. 2011, 82, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Hanavan, E. A mathematical model of the human body. AMRL-TR Aerosp. Med. Res. Lab. 1964, 1, 1–149. [Google Scholar]
- Dempster, W.T. Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Wright Air Development Center, Wright-Patterson Air Force Base: Montgomery County, OH, USA, 1955. [Google Scholar]
- Woltring, H. Representation and calculation of 3-D joint movement. Hum. Mov. Sci. 1991, 10, 603–616. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Cole, G.K.; Nigg, B.M.; Ronsky, J.L.; Yeadon, M.R. Application of the joint coordinate system to three-dimensional joint attitude and movement representation: A standardization proposal. J. Biomech. Eng. 1993, 115, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Minetti, A.E. A model equation for the prediction of mechanical internal work of terrestrial locomotion. J. Biomech. 1998, 31, 463–468. [Google Scholar] [CrossRef]
- Blankevoort, L.; Huiskes, R.; de Lange, A. The envelope of passive knee joint motion. J. Biomech. 1988, 21, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Piazza, S.J.; Cavanagh, P.R. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J. Biomech. 2000, 33, 1029–1034. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon-on-Thames, UK, 1988; ISBN 978-1-134-74270-7. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1999; ISBN 978-0-13-081542-2. [Google Scholar]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running technique is an important component of running economy and performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.B.; Samozino, P.; Zameziati, K.; Belli, A. Effects of altered stride frequency and contact time on leg-spring behavior in human running. J. Biomech. 2007, 40, 3341–3348. [Google Scholar] [CrossRef]
- Altman, A.R.; Davis, I.S. A Kinematic Method for Footstrike Pattern Detection in Barefoot and Shod Runners. Gait Posture 2012, 35, 298–300. [Google Scholar] [CrossRef] [Green Version]
- Larson, P.; Higgins, E.; Kaminski, J.; Decker, T.; Preble, J.; Lyons, D.; McIntyre, K.; Normile, A. Foot strike patterns of recreational and sub-elite runners in a long-distance road race. J. Sports Sci. 2011, 29, 1665–1673. [Google Scholar] [CrossRef]
- Hasegawa, H.; Yamauchi, T.; Kraemer, W.J. Foot strike patterns of runners at the 15-km point during an elite-level half marathon. J. Strength Cond. Res. 2007, 21, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, J.-P.; Avela, J.; Pasanen, K.; Parkkari, J. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers. Med. Sci. Sports Exerc. 2013, 45, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Lyght, M.; Nockerts, M.; Kernozek, T.W.; Ragan, R. Effects of foot strike and step frequency on Achilles tendon stress during running. J. Appl. Biomech. 2016, 32, 365–372. [Google Scholar] [CrossRef]
- Sinclair, J. Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running. Clin. Biomech. 2014, 29, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Rooney, B.D.; Derrick, T.R. Joint contact loading in forefoot and rearfoot strike patterns during running. J. Biomech. 2013, 46, 2201–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
Characteristics | DFhigh | DFlow | p |
---|---|---|---|
sex | M = 21; F = 9 | M = 21; F = 8 | NA |
age (y) | 38.7 ± 7.7 | 34.6 ± 10.0 | 0.085 |
height (m) | 1.73 ± 0.10 | 1.74 ± 0.07 | 0.847 |
leg length (m) | 0.82 ± 0.05 | 0.83 ± 0.05 | 0.551 |
mass (kg) | 69.4 ± 13.4 | 67.1 ± 8.1 | 0.440 |
running time (h/week) | 4.2 ± 2.2 | 4.5 ± 2.2 | 0.515 |
running distance (km/week) | 39.9 ± 20.9 | 42.6 ± 22.7 | 0.645 |
pelvis retroversion–anteversion (deg) | 12.3 ± 5.5 | 10.3 ± 5.5 | 0.157 |
pelvis negative–positive drop (deg) | 0.1 ± 2.3 | −0.2 ± 2.2 | 0.528 |
pelvis external–internal rotation (deg) | 0.4 ± 2.4 | −0.1 ± 2.4 | 0.482 |
forefoot–rearfoot (deg) | −21.1 ± 3.2 | −22.1± 3.0 | 0.225 |
foot pronation–supination (deg) | 16.4 ± 3.2 | 17.2 ± 3.0 | 0.281 |
toe-out–toe-in (deg) | −15.8 ± 5.0 | −14.7 ± 5.2 | 0.386 |
(%) | 30.6 ± 2.2 | 26.0 ± 2.5 | NA |
− | FS to MS | MS to TO | TO to MF | MF to FS | |||||
---|---|---|---|---|---|---|---|---|---|
Running Speed (km/h) | DF Group | tb (ms) | ΔzCOM,b (%) | tp (ms) | ΔzCOM,p (%) | te (ms) | ΔzCOM,e (%) | td (ms) | ΔzCOM,d (%) |
8 | DFhigh | 129 ± 14 | −3.7 ± 0.5 | 133 ± 11 | 3.4 ± 0.4 | 61 ± 13 | 1.0 ± 0.4 | 46 ± 11 | −0.7 ± 0.3 |
DFlow | 114 ± 12 * | −4.0 ± 0.6 | 111 ± 12 * | 3.4 ± 0.5 | 83 ± 11 * | 2.0 ± 0.5 | 68 ± 11 * | −1.4 ± 0.4 | |
10 | DFhigh | 119 ± 13 | −3.8 ± 0.4 | 117 ± 8 | 3.2 ± 0.3 | 70 ± 12 | 1.4 ± 0.4 | 52 ± 9 | −0.9 ± 0.3 |
DFlow | 104 ± 11 * | −3.7 ± 0.6 | 98 ± 10 * | 3.1 ± 0.5 | 89 ± 11 * | 2.3 ± 0.6 | 74 ± 9 * | −1.7 ± 0.4 | |
12 | DFhigh | 110 ± 11 | −3.5 ± 0.4 | 105 ± 7 | 2.9 ± 0.2 | 74 ± 11 | 1.6 ± 0.4 | 56 ± 7 | −1.0 ± 0.3 |
DFlow | 97 ± 10 * | −3.5 ± 0.5 | 90 ± 9 * | 2.8 ± 0.4 | 91 ± 9 * | 2.4 ± 0.4 | 76 ± 11 * | −1.8 ± 0.4 | |
14 | DFhigh | 99 ± 10 | –3.2 ± 0.5 | 95 ± 7 | 2.6 ± 0.3 | 78 ± 11 | 1.7 ± 0.4 | 60 ± 6 | −1.1 ± 0.3 |
DFlow | 89 ± 10 * | −3.2 ± 0.5 | 82 ± 8 * | 2.6 ± 0.4 | 93 ± 9 * | 2.5 ± 0.5 | 78 ± 12 * | −1.9 ± 0.5 | |
16 | DFhigh | 90 ± 9 | −2.9 ± 0.7 | 87 ± 7 | 2.3 ± 0.4 | 79 ± 10 | 1.8 ± 0.5 | 62 ± 7 | −1.3 ± 0.2 |
DFlow | 82 ± 9 * | −2.8 ± 0.4 | 75 ± 8 * | 2.3 ± 0.4 | 92 ± 10 * | 2.5 ± 0.5 | 77 ± 12 * | −1.9 ± 0.5 | |
18 | DFhigh | 82 ± 10 | −2.6 ± 0.5 | 79 ± 6 | 2.1 ± 0.3 | 80 ± 10 | 1.8 ± 0.5 | 62 ± 7 | −1.3 ± 0.3 |
DFlow | 75 ± 9 | −2.5 ± 0.4 | 69 ± 8 * | 2.0 ± 0.4 | 92 ± 11 * | 2.4 ± 0.6 | 76 ± 14 * | −1.9 ± 0.6 | |
DF groups effect (p) | <0.001 | 0.893 | <0.001 | 0.434 | <0.001 | <0.001 | <0.001 | <0.001 | |
running speed effect (p) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
interaction effect (p) | <0.001 | 0.056 | <0.001 | 0.375 | 0.002 | 0.061 | 0.01 | 0.418 |
Running Speed (km/h) | DF Group | FS (deg) | IA (deg) | MS (deg) | TO (deg) | Δa (deg) | Δb (deg) | Δp (deg) |
---|---|---|---|---|---|---|---|---|
8 | DFhigh | 32.0 ± 5.8 | 29.4 ± 5.8 | 23.8 ± 5.9 | 3.0 ± 5.4 | −2.6 ± 1.5 | −8.1 ± 3.0 | −20.9 ± 2.9 |
DFlow | 26.5 ± 6.6 | 23.5 ± 6.7 | 19.2 ± 6.9 | 1.4 ± 5.6 | −3.0 ± 1.7 | −7.3 ± 2.5 | −17.8 ± 3.1 * | |
10 | DFhigh | 35.1 ± 5.9 | 32.1 ± 5.9 | 25.9 ± 5.7 | 1.8 ± 5.0 | −3.1 ± 1.7 | −9.3 ± 3.0 | −24.0 ± 3.1 |
DFlow | 29.1 ± 6.7 | 25.7 ± 6.8 | 20.7 ± 6.9 | 0.2 ± 5.6 | −3.5 ± 1.8 | −8.4 ± 2.5 | −20.6 ± 3.3 * | |
12 | DFhigh | 37.7 ± 5.8 | 33.8 ± 5.7 | 27.2 ± 5.5 | 0.6 ± 4.7 | −3.8 ± 2.0 | −10.4 ± 3.0 | −26.6 ± 3.1 |
DFlow | 31.1 ± 7.1 | 27.3 ± 7.2 | 22.0 ± 7.4 | −1.2 ± 5.8 | −3.8 ± 2.1 | −9.1 ± 2.4 | −23.1 ± 3.6 * | |
14 | DFhigh | 39.4 ± 5.9 | 34.9 ± 5.6 | 28.4 ± 5.8 | −0.7 ± 4.6 | −4.6 ± 2.3 | −11.0 ± 2.9 | −29.1 ± 3.5 |
DFlow | 32.7 ± 7.6 | 28.2 ± 7.7 | 22.7 ± 7.6 | −2.3 ± 6.2 | −4.4 ± 2.2 | −10.0 ± 2.5 | −25.0 ± 3.8 * | |
16 | DFhigh | 40.6 ± 6.1 | 35.5 ± 5.5 | 29.4 ± 5.6 | −2.0 ± 4.6 | −5.1 ± 2.6 | −11.2 ± 3.2 | −31.4 ± 3.6 |
DFlow | 33.8 ± 8.0 | 28.6 ±8.2 | 23.2 ± 8.1 | −3.5 ± 6.4 | −5.2 ± 2.4 | −10.7 ± 2.7 | −26.7 ± 4.5 * | |
18 | DFhigh | 42.1 ± 6.4 | 35.8 ± 5.3 | 30.3 ± 5.4 | −2.9 ± 4.6 | −6.2 ± 2.9 | −11.7 ± 3.3 | −33.2 ± 3.3 |
DFlow | 35.2 ± 8.3 | 28.8 ± 8.7 | 23.9 ± 8.6 | −4.4 ± 6.7 | −6.3 ± 2.8 | −11.3 ± 2.8 | −28.2 ± 5.0 * | |
DF groups effect (p) | <0.001 | <0.001 | 0.002 | 0.248 | 0.779 | 0.229 | <0.001 | |
running speed effect (p) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
interaction effect (p) | 0.159 | 0.399 | 0.060 | 0.905 | 0.516 | 0.313 | 0.012 |
Running Speed (km/h) | DF Group | FS (deg) | IA (deg) | MS (deg) | TO (deg) | Δa (deg) | Δb (deg) | Δp (deg) |
---|---|---|---|---|---|---|---|---|
8 | DFhigh | 11.9 ± 4.2 | 24.7 ± 4.6 | 36.8 ± 4.0 | 19.2 ± 4.5 | 12.8 ± 2.1 | 24.9 ± 4.4 | −17.6 ± 3.6 |
DFlow | 13.1 ± 3.5 | 27.1 ± 4.0 | 34.8 ± 4.5 | 18.3 ± 3.9 | 13.9 ± 2.4 | 21.7 ± 4.6 | −16.5 ± 3.9 | |
10 | DFhigh | 11.3 ± 4.1 | 26.5 ± 4.3 | 38.2 ± 3.9 | 19.3 ± 4.9 | 15.2 ± 2.2 | 26.9 ± 4.5 | −18.9 ± 3.4 |
DFlow | 13.4 ± 3.5 | 29.2 ± 4.2 | 36.1 ± 4.4 | 18.8 ± 4.1 | 15.8 ± 2.7 | 22.7 ± 4.8 | −17.3 ± 3.8 | |
12 | DFhigh | 11.2 ± 4.1 | 28.3 ± 4.3 | 39.1 ± 3.5 | 19.7 ± 4.4 | 17.0 ± 2.4 | 27.9 ± 4.1 | −19.4 ± 3.1 |
DFlow | 13.2 ± 3.9 | 30.5 ± 4.7 | 36.8 ± 4.2 | 19.0 ± 3.8 | 17.2 ± 3.1 | 23.5 ± 4.8 | −17.7 ± 3.8 | |
14 | DFhigh | 11.8 ± 3.9 | 30.6 ± 4.3 | 40.0 ± 4.0 | 20.1 ± 4.7 | 18.8 ± 2.6 | 28.2 ± 4.3 | −19.9 ± 3.0 |
DFlow | 13.4 ± 4.1 | 32.0 ± 4.7 | 37.5 ± 4.1 | 19.9 ± 3.7 | 18.6 ± 3.2 | 24.1 ± 4.9 | −17.7 ± 3.7 | |
16 | DFhigh | 12.5 ± 3.5 | 32.6 ± 4.2 | 40.7 ± 3.7 | 20.4 ± 4.6 | 20.1 ± 2.6 | 28.2 ± 3.7 | −20.3 ± 3.1 |
DFlow | 13.6 ± 4.0 | 33.2 ± 4.7 | 37.8 ± 4.2 | 20.3 ± 3.6 | 19.6 ± 3.3 | 24.2 ± 4.7 | −17.5 ± 4.0 | |
18 | DFhigh | 13.5 ± 3.5 | 34.4 ± 4.1 | 41.1 ± 4.1 | 20.9 ± 4.6 | 20.9 ± 3.0 | 27.6 ± 4.1 | −20.2 ± 2.8 |
DFlow | 14.0 ± 3.6 | 34.3 ± 4.4 | 38.2 ± 4.3 | 21.1 ± 3.3 | 20.3 ± 3.5 | 24.2 ± 4.9 | −17.2 ± 4.3 | |
DF groups effect (p) | 0.123 | 0.159 | 0.019 | 0.717 | 0.886 | <0.001 | 0.019 | |
running speed effect (p) | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
interaction effect (p) | 0.139 | 0.001 | 0.362 | 0.301 | 0.003 | 0.410 | 0.029 |
Running Speed (km/h) | DF Group | FS (deg) | IA (deg) | MS (deg) | TO (deg) | Δa (deg) | Δb (deg) | Δp (deg) |
---|---|---|---|---|---|---|---|---|
8 | DFhigh | −14.8 ± 6.0 | −13.5 ± 4.2 | −1.5 ± 3.6 | −23.3 ± 5.8 | 1.4 ± 7.0 | 13.3 ± 5.4 | −21.8 ± 4.9 |
DFlow | −26.9 ± 9.1 | −13.1 ± 3.7 | −3.1 ± 3.3 | −22.7 ± 4.9 | 13.8 ± 9.7 | 23.8 ± 9.1 | −19.6 ± 4.5 | |
10 | DFhigh | −13.5 ± 5.6 | −13.8 ± 4.1 | −1.3 ± 3.5 | −22.6 ± 5.6 | −0.3 ± 6.5 | 12.3 ± 4.9 | −21.3 ± 4.9 |
DFlow | −26.8 ± 10.1 | −12.6 ± 3.8 | −2.9 ± 3.4 | −21.6 ± 5.3 | 14.2 ±11.4 | 23.8 ± 10.3 | −18.6 ± 4.8 | |
12 | DFhigh | −13.1 ± 5.3 | −14.0 ± 4.3 | −1.4 ± 3.6 | −21.9 ± 5.8 | −0.9 ± 6.3 | 11.7 ± 4.9 | −20.5 ± 4.8 |
DFlow | −26.4 ± 10.7 | −12.5 ± 4.1 | −3.1 ± 3.5 | −21.2 ± 5.4 | 13.9 ± 12.5 | 23.3 ± 11.2 | −18.1 ± 4.8 | |
14 | DFhigh | −13.5 ± 6.4 | −13.5 ± 4.3 | −1.7 ± 3.8 | −21.3 ± 5.9 | 0.0 ± 7.2 | 11.8 ± 5.7 | −19.5 ± 4.8 |
DFlow | −26.5 ± 10.8 | −12.1 ± 4.1 | −3.4 ± 3.4 | −20.3 ± 5.6 | 14.5 ± 13.0 | 23.2 ± 11.0 | −16.9 ± 5.0 | |
16 | DFhigh | −14.0 ± 7.1 | −12.7 ± 4.4 | −2.0 ± 3.9 | −20.7 ± 6.1 | 1.3 ± 7.5 | 12.0 ± 6.3 | −18.7 ± 5.0 |
DFlow | −27.4 ± 10.9 | −11.5 ± 4.2 | −3.8 ± 3.6 | −19.9 ± 6.0 | 15.9 ± 13.0 | 23.6 ± 11.0 | −16.0 ± 5.2 | |
18 | DFhigh | −14.9 ± 7.7 | −11.6 ± 4.5 | −2.5 ± 4.2 | −19.8 ± 6.4 | 3.2 ± 7.7 | 12.4 ± 6.4 | −17.4 ± 4.7 |
DFlow | −28.2 ± 11.2 | −10.8 ± 4.1 | −4.3 ± 3.7 | −19.7 ± 6.4 | 17.4 ± 12.9 | 23.9 ± 10.7 | −15.3 ± 5.4 | |
DF groups effect (p) | <0.001 | 0.287 | 0.069 | 0.628 | <0.001 | <0.001 | 0.055 | |
running speed effect (p) | 0.046 | <0.001 | <0.001 | <0.001 | <0.001 | 0.317 | <0.001 | |
interaction effect (p) | 0.682 | 0.190 | 0.741 | 0.455 | 0.438 | 0.778 | 0.486 |
Running Speed (km/h) | DF Group | FS (deg) | IA (deg) | MS (deg) | TO (deg) | Δa (deg) | Δb (deg) | Δp (deg) |
---|---|---|---|---|---|---|---|---|
8 | DFhigh | 3.8 ± 3.1 | 0.7 ± 2.9 | −0.7 ± 3.6 | 2.7 ± 3.1 | −3.0 ± 1.1 | −4.5 ± 2.0 | 3.4 ± 1.4 |
DFlow | 2.3 ± 3.3 | −0.6 ± 3.0 | −0.6 ± 3.4 | 2.2 ± 3.0 | −2.9 ± 1.1 | −2.9 ± 1.9 | 2.9 ± 1.4 | |
10 | DFhigh | 4.8 ± 3.4 | 1.2 ± 3.1 | 0.5 ± 3.7 | 3.5 ± 3.2 | −3.6 ± 1.2 | −4.3 ± 2.2 | 2.9 ± 1.3 |
DFlow | 2.6 ± 3.4 | −0.3 ± 3.1 | 0.2 ± 3.7 | 2.6 ± 3.3 | −2.9 ± 1.3 | −2.5 ± 1.8 | 2.5 ± 1.5 | |
12 | DFhigh | 5.1 ± 3.6 | 1.2 ± 3.2 | 1.2 ± 3.7 | 3.6 ± 3.3 | −3.9 ± 1.6 | −4.0 ± 2.4 | 2.5 ± 1.3 |
DFlow | 2.8 ± 3.8 | 0.2 ± 3.4 | 0.8 ± 4.0 | 2.8 ± 3.7 | −2.7 ± 1.3 | −2.0 ± 1.6 | 1.9 ± 1.3 | |
14 | DFhigh | 4.9 ± 3.6 | 1.1 ± 3.3 | 1.6 ± 3.8 | 3.4 ± 3.4 | −3.8 ± 1.9 | −3.3 ± 2.6 | 1.8 ± 1.3 |
DFlow | 2.5 ± 3.9 | 0.3 ± 3.5 | 1.2 ± 4.1 | 2.5 ± 4.1 | −2.3 ± 1.3 * | −1.4 ± 1.7 | 1.4 ± 1.4 | |
16 | DFhigh | 4.5 ± 3.5 | 1.1 ± 3.3 | 1.9 ± 3.8 | 3.1 ± 3.6 | −3.4 ± 2.1 | −2.6 ± 2.8 | 1.2 ± 1.4 |
DFlow | 2.3 ± 4.1 | 0.4 ± 4.0 | 1.3 ± 4.6 | 2.2 ± 4.4 | −1.9 ± 1.3 * | −1.0 ± 1.7 | 0.8 ± 1.5 | |
18 | DFhigh | 4.4 ± 3.6 | 1.3 ± 3.4 | 2.3 ± 3.9 | 2.9 ± 3.9 | −3.1 ± 2.5 | −2.1 ± 3.1 | 0.6 ± 1.6 |
DFlow | 2.3 ± 4.6 | 0.8 ± 4.5 | 1.7 ± 5.0 | 2.0 ± 4.8 | −1.5 ± 1.5 * | −0.7 ± 1.8 | 0.3 ± 1.4 | |
DF groups effect (p) | 0.026 | 0.243 | 0.700 | 0.368 | 0.004 | 0.002 | 0.193 | |
running speed effect (p) | 0.019 | 0.010 | <0.001 | 0.038 | <0.001 | <0.001 | <0.001 | |
interaction effect (p) | 0.318 | 0.197 | 0.508 | 0.700 | 0.001 | 0.394 | 0.660 |
Running Speed (km/h) | DF Group | FS (deg) | IA (deg) | MS (deg) | TO (deg) | Δa (deg) | Δb (deg) | Δp (deg) |
---|---|---|---|---|---|---|---|---|
8 | DFhigh | 12.2 ± 8.4 | 0.5 ± 2.5 | −3.7 ± 1.6 | −32.4 ± 5.3 | −11.7 ± 6.4 | −15.9 ± 7.8 | −28.6 ± 5.3 |
DFlow | −2.4 ± 10.5 | −3.3 ± 3.1 * | −5.1 ± 2.2 | −29.3 ± 5.0 | −1.0 ± 8.2 | −2.8 ± 9.4 | −24.1 ± 4.0 | |
10 | DFhigh | 16.3 ± 8.2 | 0.6 ± 2.4 | −4.0 ± 1.6 | −33.9 ± 5.3 | −15.7 ± 6.3 | −20.2 ± 7.7 | −29.9 ± 5.2 |
DFlow | −0.1 ± 11.8 | −3.2 ± 2.9 * | −5.4 ± 2.4 | −30.2 ± 5.7 | −3.1 ± 9.6 | −5.3 ± 10.7 | −24.8 ± 4.5 | |
12 | DFhigh | 19.0 ± 7.9 | 0.4 ± 2.3 | −4.2 ± 1.6 | −35.0 ± 5.4 | −18.6 ± 6.1 | −23.1 ± 7.2 | −30.9 ± 5.1 |
DFlow | 2.2 ± 12.9 | −3.2 ± 3.0 * | −5.6 ± 2.6 | −31.6 ± 5.7 | −5.4 ± 10.6 | −7.9 ± 11.5 | −25.9 ± 4.4 | |
14 | DFhigh | 20.1 ± 8.6 | −0.3 ± 2.2 | −4.5 ± 1.8 | −35.7 ± 5.7 | −20.4 ± 6.9 | −24.6 ± 7.8 | −31.2 ± 5.3 |
DFlow | 4.0 ± 13.6 | −3.3 ± 3.1 * | −6.0 ± 2.9 | −32.4 ± 6.0 | −7.4 ± 11.3 | −10.1 ± 12.3 | −26.3 ± 4.5 | |
16 | DFhigh | 20.6 ± 8.8 | −0.9 ± 2.2 | −4.7 ± 1.9 | −36.4 ± 5.6 | −21.5 ± 7.2 | −25.3 ± 7.9 | −31.7 ± 5.1 |
DFlow | 4.6 ± 13.9 | −3.6 ± 3.2 * | −6.2 ± 3.2 | −33.0 ± 6.3 | −8.2 ± 11.5 | −10.9 ± 12.2 | −26.7 ± 4.7 | |
18 | DFhigh | 20.6 ± 8.5 | −1.4 ± 2.2 | −4.8 ± 2.0 | −36.5 ± 5.6 | −22.0 ± 7.1 | −25.5 ± 7.8 | −31.7 ± 4.9 |
DFlow | 5.1 ± 14.2 | −3.9 ± 3.3 * | −6.5 ± 3.2 | −33.9 ± 6.8 | −9.0 ± 11.9 | −11.5 ± 12.7 | −27.4 ± 5.1 | |
DF groups effect (p) | <0.001 | <0.001 | 0.012 | 0.028 | <0.001 | <0.001 | <0.001 | |
running speed effect (p) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
interaction effect (p) | 0.558 | 0.001 | 0.623 | 0.376 | 0.265 | 0.542 | 0.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patoz, A.; Lussiana, T.; Thouvenot, A.; Mourot, L.; Gindre, C. Duty Factor Reflects Lower Limb Kinematics of Running. Appl. Sci. 2020, 10, 8818. https://doi.org/10.3390/app10248818
Patoz A, Lussiana T, Thouvenot A, Mourot L, Gindre C. Duty Factor Reflects Lower Limb Kinematics of Running. Applied Sciences. 2020; 10(24):8818. https://doi.org/10.3390/app10248818
Chicago/Turabian StylePatoz, Aurélien, Thibault Lussiana, Adrien Thouvenot, Laurent Mourot, and Cyrille Gindre. 2020. "Duty Factor Reflects Lower Limb Kinematics of Running" Applied Sciences 10, no. 24: 8818. https://doi.org/10.3390/app10248818
APA StylePatoz, A., Lussiana, T., Thouvenot, A., Mourot, L., & Gindre, C. (2020). Duty Factor Reflects Lower Limb Kinematics of Running. Applied Sciences, 10(24), 8818. https://doi.org/10.3390/app10248818