Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction
Abstract
:1. Introduction
2. Mechanical Interacting Systems
2.1. Spin-1/2 Particle Interacting with a Magnetic Field
2.2. Two-Level Atom Interacting with an Electric (Optical) Field
3. Quantum Photonic Simulations
3.1. Classical Study of the Photonic Device
3.2. Quantum Study of the Photonic Device
3.3. Photonic Simulation of Spin-Magnetic Field Interaction
3.4. Photonic Simulation of Light-Matter Interaction
3.5. Implementation of Photonic Simulators
4. Quantum Geometric Phases
4.1. Geometric Phases in Spin-Magnetic Field Photonic Simulation
4.2. Elimination of the Dynamical Phase in Spin-Magnetic Field Photonic Simulation
4.3. Geometric Phases with Other Quantum States
4.4. Optical Measurement of Geometric Phases
4.5. Geometric Phases in Light-Matter Photonic Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RWA | Rotating Wave Approximation |
NMR | Nuclear Magnetic Resonance |
AA | Aharonov–Anandan |
SPDC | Spontaneous Parametric Down Conversion |
DC | Directional Coupler |
SDC | Selective Directional Coupler |
APD | Avalanche Photodiode |
SMW | Single-Mode Waveguide |
TMW | Two-Mode Waveguide |
OG | Optical Grating |
References
- Huttner, B.; Serulnik, S.; Ben-Aryeh, Y. Quantum analysis of light propagation in a parametric amplifier. Phys. Rev. A 1990, 42, 5594–5600. [Google Scholar] [CrossRef] [PubMed]
- Liñares, J.; Nistal, M. Quantization of coupled modes propagation in integrated optical waveguides. J. Mod. Opt. 2003, 50, 781–790. [Google Scholar] [CrossRef]
- Johnson, T.H.; Clark, S.R.; Jarsch, D. What is a quantum simulator? EPJ Quantum Technol. 2014, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, I.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153–185. [Google Scholar] [CrossRef] [Green Version]
- Schaetz, T.; Monroe, C.R.; Esslinger, T. Focus on quantum simulation. New J. Phys. 2013, 15, 085009. [Google Scholar] [CrossRef]
- Agarwal, G. Quantum Optics; Cambridge Unversity Press: Cambridge, UK, 2013. [Google Scholar]
- Longui, S.; Della Valle, G. Anyons in one-dimensional lattices: A photonic realization. Opt. Lett. 2012, 37, 2160–2162. [Google Scholar] [CrossRef]
- Le Bellac, M. A Short Introduction to Quantum Information and Quantum Computation; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Loudon, R. The Quantum Theory of Light; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Lee, D. Electromagnetic Principles of Integrated Optics; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Doerr, C. Silicon photonic integration in telecommunications. Front. Phys. 2015, 3, 7–22. [Google Scholar] [CrossRef]
- Politi, A.; Matthews, J.C.F.; Thompson, M.G.; O’Brien, J.L. Integrated Quantum Photonics. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1673–1684. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sciarrinom, F.; Laing, A.; Thompson, M. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Campany, J.; Pérez, D. Programmable Integrated Photoncs; Oxford Unversity Press: Oxford, UK, 2020. [Google Scholar]
- Lin˜ares, J.; Montero, C.; Moreno, V.; Nistal, M.C.; Prieto, X.; Salgueiro, J.R.; Sotelo, D. Glass processing by ion exchange to fabricate integrated optical planar components: Applications. Proc. SPIE 2000, 3936, 227–238. [Google Scholar]
- Righini, G.; Chiappini, A. Glass optical waveguides: A review of fabrication techniques. Opt. Eng. 2014, 53, 071819. [Google Scholar] [CrossRef]
- Cacciari, I.; Brenci, M.; Falciai, R.; Conti, G.; Pelli, S.; Righini, G. Reproducibility of splicer-based long-period fiber gratings for gain equalization. Front. Phys. 2007, 3, 203–206. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, H.; Xue, L.; Liu, B.; Zhang, H. Design of lithium niobate phase-shifted Bragg grating for electro-optically tunable ultra-narrowbandwidth filtering. Appl. Opt. 2019, 58, 6770–6774. [Google Scholar] [CrossRef] [PubMed]
- Ben-Aryeh, Y.; Serulnik, S. The quantum treatment of propagation in non-linear optical media by the use of temporal modes. Phys. Lett. A 1991, 155, 473–479. [Google Scholar] [CrossRef]
- Liñares, J.; Nistal, M.; Barral, D. Quantization of Coupled 1d Vector Modes In Integrated Photonics Waveguides. New J. Phys. 2008, 10, 063023. [Google Scholar] [CrossRef]
- Liñares, J.; Nistal, M.; Barral, D.; Moreno, V. Optical field-strength polarization of two-mode single-photon states. Eur. J. Phys. 2010, 31, 991–1005. [Google Scholar] [CrossRef]
- Fox, M. Quantum Optics; Oxford Unversity Press: Oxford, UK, 2006. [Google Scholar]
- Englert, B.; Kurtsiefer, C.; Weinfurter, H. Universal unitary gate for single-photon two-qubit states. Phys. Rev. A 2001, 63, 032302. [Google Scholar] [CrossRef] [Green Version]
- Spring, J.; Metcalf, B.; Humphreys, P.; Kolthammer, W.; Jin, X.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson sampling on photonic chip. Science 2013, 239, 798–801. [Google Scholar] [CrossRef] [Green Version]
- de Guise, H.; Di Matteo, O.; Sánchez-Soto, L. Simple factorization of unitary transformations. Phys. Rev. A 2018, 97, 022328. [Google Scholar] [CrossRef]
- Berry, R. Quantal phase factors accompanying adiabatic change. Proc. R. Soc. Lond. A 1987, 392, 45–64. [Google Scholar]
- Aharonov, Y.; Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 1987, 58, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T. Berry phases for partial cycles. Phys. Rep. 1988, 38, 1590–1592. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R. Polarization of light and topological phases. Phys. Rep. 1997, 281, 1–64. [Google Scholar] [CrossRef]
- Liñares, J.; Nistal, M. Geometric phases in multidirectional electromagnetic coupling theory. Phys. Lett. A 1992, 162, 7–14. [Google Scholar] [CrossRef]
- Ekert, A.; Ericsson, M.; Hayden, P.; Inamori, H.; Jones, J.; Oi, D.; Vedral, V. Geometric quantum computation. J. Mod. Opt. 2000, 47, 2501–2513. [Google Scholar] [CrossRef]
- Sjöqvist, E. Geometric phases in quantum information. Int. J. Quantum Chem. 2015, 115, 1311–1326. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, T.; Simon, R. Berry phase, interference of light beams and the Hannay angle. Phys. Rev. A 1990, 42, 6924–6927. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liñares, J.; Prieto-Blanco, X.; Carral, G.M.; Nistal, M.C. Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction. Appl. Sci. 2020, 10, 8850. https://doi.org/10.3390/app10248850
Liñares J, Prieto-Blanco X, Carral GM, Nistal MC. Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction. Applied Sciences. 2020; 10(24):8850. https://doi.org/10.3390/app10248850
Chicago/Turabian StyleLiñares, Jesús, Xesús Prieto-Blanco, Gabriel M. Carral, and María C. Nistal. 2020. "Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction" Applied Sciences 10, no. 24: 8850. https://doi.org/10.3390/app10248850
APA StyleLiñares, J., Prieto-Blanco, X., Carral, G. M., & Nistal, M. C. (2020). Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction. Applied Sciences, 10(24), 8850. https://doi.org/10.3390/app10248850