Biotribology in Arthroplasty: Worn Surfaces Investigation on Ceramic Hip Femoral Heads Considering Wettability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Selection
2.2. Surface Characterization
2.3. Wettability Set-Up
3. Results
3.1. Microscopic Results
3.2. Wettability Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, J.; Jin, Z.; Tipper, J.L.; Stone, M.; Ingham, E. Tribology of Alternative Bearings. Clin. Orthop. Relat. Res. 2006, 453, 25–34. [Google Scholar] [CrossRef]
- Stea, S.; Bordini, B.; De Clerico, M.; Petropulacos, K.; Toni, A. First hip arthroplasty register in Italy: 55000 cases and 7 year follow-up. Int. Orthop. 2009, 33, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.J.; Cuckler, J.M.; Huddleston, J.I.; Galante, J.O. How have alternative bearings (such as metal-on-metal, highly cross-linked polyethylene, and ceramic-on-ceramic) affected the prevention and treatment of osteolysis. J. Am. Acad. Orthop. Surg. 2008, 16, S33–S38. [Google Scholar] [CrossRef]
- Amstutz, H.C. History of metal-on-metal articulations including surface arthroplasty of the hip. In World Tribology Forum in Arthroplasty; Rieker, C., Oberholzer, S., Wyss, U., Eds.; Huber Heights: Montreaux, Switzerland, 2001; pp. 113–123. [Google Scholar]
- Rieker, C.B.; Schon, R.; Kottig, P. Development and validation of a second-generation metal-on-metal bearing: Laboratory studies and analysis of retrievals. J. Arthroplast. 2004, 19, 5–11. [Google Scholar] [CrossRef]
- Cuckler, J.M.; Moore, K.D.; Lombardi, A.V., Jr.; McPherson, E.; Emerson, R. Large versus small femoral heads in metal-on-metal total hip arthroplasty. J. Arthroplast. 2004, 19, 41–44. [Google Scholar] [CrossRef]
- Macchi, F.; Willman, G. Allumina Biolox forte: Evoluzione, stato dell’arte e affidabilità. Lo Scalpello 2001, 15, 99–106. [Google Scholar]
- Santavirta, S.; Bohler, M.; Harris, W.H.; Konttinen, Y.T.; Lappalainen, R.; Muratoglu, O.K.; Rieker, C.; Salzer, M. Alternative materials to improve total hip replacement tribology. Acta Orthop. Scand. 2003, 74, 380–388. [Google Scholar] [CrossRef]
- Toni, A.; Traina, F.; Stea, S.; Sudanese, A.; Visentin, M.; Bordini, B.; Squarzoni, S. Early diagnosis of ceramic liner fracture. Guidelines based on a twelve-year clinical experience. J. Bone Jt. Surg. Am. 2006, 88, 55–63. [Google Scholar] [CrossRef]
- Affatato, S.; Testoni, M.; Cacciari, G.L.; Toni, A.; Goldoni, M. Mixed oxides prosthetic ceramic ball heads. Part 3: Effect of the ZrO2 fraction on the wear of ceramic on ceramic hip joint prostheses. A long-term in vitro study. Biomaterials 2001, 22, 717–723. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; Merola, M. Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos. Part B Eng. 2015, 83, 276–283. [Google Scholar] [CrossRef]
- Affatato, S.; Ruggiero, A.; De Mattia, J.S.J.S.; Taddei, P. Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites. Compos. Part B Eng. 2016, 92, 290–298. [Google Scholar] [CrossRef]
- Affatato, S.; Freccero, N.; Taddei, P. The biomaterials challenge: A comparison of polyethylene wear using a hip joint simulator. J. Mech. Behav. Biomed. Mater. 2016, 53, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Tateiwa, T.; Clarke, I.C.; Pezzotti, G.; Sedel, L.; Kumakura, T.; Shishido, T.; Yamamoto, K. Surface Micro-Analyses of Long-Term Worn Retrieved “Osteal TM” Alumina Ceramic Total Hip Replacement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Nevelos, J.E.; Ingham, E.; Doyle, C.; Fisher, J.; Nevelos, A.B. Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses. Biomaterials 1999, 20, 1833–1840. [Google Scholar] [CrossRef]
- Spriano, S.; Sarath Chandra, V.; Cochis, A.; Uberti, F.; Rimondini, L.; Bertone, E.; Vitale, A.; Scolaro, C.; Ferrari, M.; Cirisano, F.; et al. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater. Sci. Eng. C 2017, 74, 542–555. [Google Scholar] [CrossRef]
- Gispert, M.P.; Serro, A.P.; Colaço, R.; Saramago, B. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants. Wear 2006, 260, 149–158. [Google Scholar] [CrossRef]
- Affatato, S.; Bersaglia, G.; Junqiang, Y.; Traina, F.; Toni, A.; Viceconti, M.; Yin, J. The predictive Power of Surface Profile Parameters on the Amount of Wear Measured In Vitro on Metal-On-Polyethylene Artificial Hip Joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006, 220, 457–464. [Google Scholar] [CrossRef]
- Clarke, I.C.; Gustafson, A. Clinical and hip simulator comparisons of ceramic-on-polyethylene and metal-on-polyethylene wear. Clin. Orthop. Relat. Res. 2000, 34–40. [Google Scholar] [CrossRef]
- Affatato, S.; Frigo, M.; Toni, A. An in vitro investigation of Diamond-Like Carbon as a femoral head coating. J. Biomed. Mater. Res. 2000, 53, 221–226. [Google Scholar] [CrossRef]
- Affatato, S.; Torrecillas, R.; Taddei, P.; Rocchi, M.; Fagnano, C.; Ciapetti, G.; Toni, A. Advanced nanocomposite materials for orthopaedic applications. I. A long-term in vitro wear study of zirconia-toughened alumina. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78, 76–82. [Google Scholar] [CrossRef]
- Widmer, M.R.; Heuberger, M.; Vörös, J.; Spencer, N.D. Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: Implications for hip-implant design. Tribol. Lett. 2001, 10, 111–116. [Google Scholar] [CrossRef]
- Zhang, C.; Fujii, M. Influence of Wettability and Mechanical Properties on Tribological Performance of DLC Coatings under Water Lubrication. J. Surf. Eng. Mater. Adv. Technol. 2015, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Borruto, A.; Crivellone, G.; Marani, F. Influence of surface wettability on friction and wear tests. Wear 1998, 222, 57–65. [Google Scholar] [CrossRef]
- López-García, J. Wettability Analysis and Water Absorption Studies of Plasma Activated Polymeric Materials. In Non-Thermal Plasma Technology for Polymeric Materials; Thomas, S., Mozetič, M., Cvelbar, U., Špatenka, P., Praveen, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–285. ISBN 9780128131527. [Google Scholar]
- Kubiaka, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus roughness of engineering surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Shukla, D.K.; Kango, S.; Sharma, N. Implication of Surface Texture and Slip on Hydrodynamic Fluid Film Bearings: Comprehensive Survey. Tribol. Online 2020, 15, 265–282. [Google Scholar] [CrossRef]
- Thevenot, P.; Hu, W.; Tang, L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 2008, 8, 270–280. [Google Scholar] [CrossRef]
- Bertolini, R.; Bruschi, S.; Ghiotti, A.; Pezzato, L.; Dabalà, M. The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications. Procedia CIRP 2017, 65, 7–12. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 21. [Google Scholar] [CrossRef]
- Ahmad, D.; van den Boogaert, I.; Miller, J.; Presswell, R.; Jouhara, H. Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 22, 2686–2725. [Google Scholar] [CrossRef]
- Ruggiero, A.; Sicilia, A. Lubrication modeling and wear calculation in artificial hip joint during the gait. Tribol. Int. 2020, 142, 105993. [Google Scholar] [CrossRef]
- Ruggiero, A. Milestones in natural lubrication of synovial joints. Front. Mech. Eng. 2020, 10, 52. [Google Scholar] [CrossRef]
- Ruggiero, A.; Merola, M.; Affatato, S. Finite element simulations of hard-on-soft hip joint prosthesis accounting for dynamic loads calculated from a musculoskeletal model during walking. Materials 2018, 11, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, A.; Sicilia, A.; Affatato, S. In silico total hip replacement wear testing in the framework of ISO 14242-3 accounting for mixed elasto-hydrodynamic lubrication effects. Wear 2020, 460–461, 203420. [Google Scholar] [CrossRef]
- Wojciechowski, L.; Kubiak, K.J.; Mathia, T.G. Schermata 2020-09-21 alle 12. Tribiol. Int. 2016, 39, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Affatato, S.; Ruggiero, A.; Merola, M.; Logozzo, S. Does metal transfer differ on retrieved Biolox® Delta composites femoral heads? Surface investigation on three Biolox® generations from a biotribological point of view. Compos. Part B Eng. 2017, 113, 164–173. [Google Scholar] [CrossRef]
- Boutin, P.; Christel, P.; Dorlot, J.-M.; Meunier, A.; De Roquancourt, A.; Blanquaert, D.; Herman, S.; Sedel, L.; Witvoet, J. The use of dense alumina-alumina ceramic combination in total hip replacement. J. Biomed. Mater. Res. 1988, 22, 1203–1232. [Google Scholar] [CrossRef]
- Nevelos, J.E.; Prudhommeaux, F.; Hamadouche, M.; Doyle, C.; Ingham, E.; Meunier, A.; Nevelos, A.B.; Sedel, L.; Fisher, J. Comparative analysis of two different types of alumina-alumina hip prosthesis retrieved for aseptic loosening. J. Bone Jt. Surg. Br. 2001, 83, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.; Griss, P.; Scheller, G.; Moser, T. Ten- to 14-year results of a ceramic hip prosthesis. Clin. Orthop. Relat. Res. 1992, 282, 73–80. [Google Scholar] [CrossRef]
- Hoechstetter, S.; Walz, U.; Dang, L.H.; Thinh, N.X. Effects of topography and surface roughness in analyses of landscape structure—A proposal to modify the existing set of landscape metrics. Landsc. Online 2008, 3, 1–14. [Google Scholar] [CrossRef]
Heads | Material | Wettability Angle (ϑ) | MT Area (mm2) | % MT Area | Heads | Material | Wettability Angle (ϑ) | MT Area (mm2) | % MT Area |
---|---|---|---|---|---|---|---|---|---|
#01 | Biolox® Forte | 39 | 88 | 11 | #13 | Biolox® Forte | 45 | 30 | 4 |
#02 | Biolox® Forte | 43 | 90 | 11 | #14 | Biolox® Delta | 40 | 41 | 5 |
#03 | Biolox® Forte | 38 | 127 | 16 | #15 | Biolox® Delta | 40 | 48 | 6 |
#04 | Biolox® Forte | 40 | 161 | 20 | #16 | Biolox® Delta | 46 | 85 | 11 |
#05 | Biolox® Forte | 42 | 235 | 29 | #17 | Biolox® Delta | 37 | 86 | 11 |
#06 | Biolox® Forte | 45 | 412 | 51 | #18 | Biolox® Delta | 50 | 107 | 13 |
#07 | Biolox® Forte | 44 | 128 | 16 | #19 | Biolox® Delta | 55 | 128 | 16 |
#08 | Biolox® Forte | 43 | 86 | 11 | #20 | Biolox® Delta | 43 | 138 | 17 |
#09 | Biolox® Forte | 54 | 30 | 4 | #21 | Biolox® Delta | 51 | 154 | 19 |
#10 | Biolox® Forte | 56 | 95 | 12 | #22 | Biolox® Delta | 47 | 219 | 27 |
#11 | Biolox® Forte | 43 | 239 | 30 | #23 | Biolox® Delta | 42 | 309 | 38 |
#12 | Biolox® Forte | 42 | 286 | 36 | #24 | Biolox® Delta | 43 | 574 | 71 |
Wettability Angle for Each New Femoral Head | Wettability Angle for Each In Vitro Wear Test Femoral Head | ||||
---|---|---|---|---|---|
N. Femoral Heads | Material | Wettability Angle (ϑ) | N. Femoral Heads | Material | Wettability Angle (ϑ) |
#25 | Biolox® Delta | 43 | #34 | Biolox® Forte | 62 |
#26 | Biolox® Delta | 39 | #35 | Biolox® Forte | 56 |
#27 | Biolox® Delta | 56 | #36 | Biolox® Forte | 33 |
#28 | Biolox® Delta | 33 | #37 | Biolox® Forte | 56 |
#29 | Biolox® Delta | 52 | #38 | Biolox® Forte | 52 |
#30 | Biolox® Delta | 60 | #39 | Biolox® Forte | 39 |
#31 | Biolox® Delta | 34 | #40 | Biolox® Forte | 34 |
#32 | Biolox® Delta | 56 | #41 | Biolox® Forte | 49 |
#33 | Biolox® Delta | 48 | #42 | Biolox® Forte | 45 |
#43 | Biolox® Forte | 40 | |||
#44 | Biolox® Forte | 38 | |||
#45 | Biolox® Forte | 35 | |||
#46 | Biolox® Forte | 35 | |||
#47 | Biolox® Forte | 24 | |||
#48 | Biolox® Forte | 33 | |||
#49 | Biolox® Forte | 46 | |||
#50 | Biolox® Forte | 43 | |||
#51 | Biolox® Forte | 42 | |||
#52 | Biolox® Forte | 46 | |||
#53 | Biolox® Forte | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Affatato, S.; Ruggiero, A. Biotribology in Arthroplasty: Worn Surfaces Investigation on Ceramic Hip Femoral Heads Considering Wettability. Appl. Sci. 2020, 10, 8919. https://doi.org/10.3390/app10248919
Affatato S, Ruggiero A. Biotribology in Arthroplasty: Worn Surfaces Investigation on Ceramic Hip Femoral Heads Considering Wettability. Applied Sciences. 2020; 10(24):8919. https://doi.org/10.3390/app10248919
Chicago/Turabian StyleAffatato, Saverio, and Alessandro Ruggiero. 2020. "Biotribology in Arthroplasty: Worn Surfaces Investigation on Ceramic Hip Femoral Heads Considering Wettability" Applied Sciences 10, no. 24: 8919. https://doi.org/10.3390/app10248919
APA StyleAffatato, S., & Ruggiero, A. (2020). Biotribology in Arthroplasty: Worn Surfaces Investigation on Ceramic Hip Femoral Heads Considering Wettability. Applied Sciences, 10(24), 8919. https://doi.org/10.3390/app10248919