Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning
Abstract
:1. Introduction
2. Problem Definition
3. Proposed Method
3.1. Artificial Potential Field
3.2. Transformation of Configuration Space
3.3. Path Planning
3.4. Savitzky–Golay Filter
4. Experimental Design
4.1. Hardware Setup
4.2. Data Collection Method
4.3. Path Planning
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Chan, C.-Y. Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 2017, 3, 208–216. [Google Scholar] [CrossRef]
- González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 4, 1135–1145. [Google Scholar] [CrossRef]
- Sun, N.; Yang, E.; Corney, J.; Chen, Y. Semantic Path Planning for Indoor Navigation and Household Tasks. TAROS 2019: Towards Autonomous Robotic Systems. In Lecture Notes in Computer Science; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Spinger: London, UK, 2019; Volume 11650, pp. 191–201. [Google Scholar]
- Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Jose, S.; Antony, A. Mobile robot remote path planning and motion control in a maze environment. In Proceedings of the IEEE International Conference on Engineering and Technology, Coimbatore, India, 17–18 March 2016; pp. 207–209. [Google Scholar]
- Shwail, S.H.; Karim, A.; Turner, S. Probabilistic multi robot path planning in dynamic environments: A comparison between A* and DFS. Int. J. Comput. Appl. 2013, 7, 29–34. [Google Scholar]
- Kim, Y.N.; Ko, D.W.; Suh, I.H. Confidence random tree-based algorithm for mobile robot path planning considering the path length and safety. Int. J. Adv. Robot. Syst. 2019, 16, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization. In Proceedings of the International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 1722–1727. [Google Scholar]
- Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a Star Algorithm for a Mobile Robot. Proceedia Eng. 2014, 96, 59–69. [Google Scholar]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments. Int. J. Rob. Res. 2010, 29, 485–501. [Google Scholar] [CrossRef]
- Raksincharoensak, P.; Hasegawa, T.; Nagai, M. Motion Planning and Control of Autonomous Driving Intelligence System Based on Risk Potential Optimization Framework. Int. J. Automot. Eng. 2016, 7, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Hamid, U.Z.A.; Zamzuri, H.; Rahman, M.A.A.; Saito, Y.; Raksincharoensak, P. Collision avoidance system using artificial potential field and nonlinear model predictive control: A case study of intersection collisions with sudden appearing moving vehicles. In Proceedings of the International Symposium on Dynamics of Vehicles on Roads and Tracks, Rockhampton, Australia, 14–18 August 2017. [Google Scholar]
- Toyoshima, A.; Nishino, N.; Chugo, D.; Muramatsu, S.; Yokota, S.; Hashimoto, H. Autonomous Mobile Robot Navigation: Consideration of the Pedestrian’s Dynamic Personal Space. In Proceedings of the IEEE International Symposium on Industrial Electronics, Cairns, Australia, 13–15 June 2018; pp. 1094–1099. [Google Scholar]
- Lazarowska, A. Discrete Artificial Potential Field Approach to Mobile Robot Path Planning. IFAC-PapersOnLine 2019, 52, 277–282. [Google Scholar] [CrossRef]
- Klančar, G.; Seder, M.; Blažič, S.; Škrjanc, I.; Petrović, I. Drivable Path Planning Using Hybrid Search Algorithm Based on E* and Bernstein-Bézier Motion Primitives. IEEE Trans. Syst. Man Cybern. Syst. 2019, 1–15. [Google Scholar] [CrossRef]
- Kumar, P.B.; Rawat, H.; Parhi, D.R. Path planning of humanoids based on artificial potential field method in unknown environments. Expert Syst. 2019, 36, 7655–7678. [Google Scholar] [CrossRef]
- Zhu, Q.; Yan, Y.; Xing, Z. Robot Path Planning Based on Artificial Potential Field Approach with Simulated Annealing. In Proceedings of the International Conference on Intelligent Systems Design and Applications, Jinan, China, 16–18 October 2006; pp. 622–627. [Google Scholar]
- Schafer, R.W. What Is a Savitzky–Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Acharya, D.; Rani, A.; Agarwal, S.; Singh, V. Application of adaptive Savitzky–Golay filter for EEG signal processing. Perspect. Sci. 2016, 8, 677–679. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmi, M.Z.; Ito, T. Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning. Appl. Sci. 2020, 10, 8987. https://doi.org/10.3390/app10248987
Azmi MZ, Ito T. Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning. Applied Sciences. 2020; 10(24):8987. https://doi.org/10.3390/app10248987
Chicago/Turabian StyleAzmi, Muhammad Zulfaqar, and Toshio Ito. 2020. "Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning" Applied Sciences 10, no. 24: 8987. https://doi.org/10.3390/app10248987
APA StyleAzmi, M. Z., & Ito, T. (2020). Artificial Potential Field with Discrete Map Transformation for Feasible Indoor Path Planning. Applied Sciences, 10(24), 8987. https://doi.org/10.3390/app10248987