Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precipitation of Ni(OH)2 Precursors
2.2. Lithiation
2.3. Cell Assembling and Electrochemical Characterization
2.4. Characterization of Samples
3. Results and Discussion
3.1. Effect of Precipitation on Crystal Growth
3.2. XRD Results and Discussion
3.3. SEM Images of LiNiO2
3.4. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar] [CrossRef]
- Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4302. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Seong, W.M.; Manthiram, A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 250–259. [Google Scholar] [CrossRef]
- Ohzuku, T.; Makimura, Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chem. Lett. 2001, 30, 642–643. [Google Scholar] [CrossRef]
- Manthiram, A.; Song, B.; Li, W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2017, 6, 125–139. [Google Scholar] [CrossRef]
- Arai, H. Characterization and cathode performance of Li1−xNi1+xO2 prepared with the excess lithium method. Solid State Ion. 1995, 80, 261–269. [Google Scholar] [CrossRef]
- Ohzuku, T.; Ueda, A.; Nagayama, M. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc. 1993, 140, 1862–1870. [Google Scholar] [CrossRef]
- Megahed, S.; Ebner, W. Lithium-ion battery for electronic applications. J. Power Sources 1995, 54, 155–162. [Google Scholar] [CrossRef]
- Hirano, A. Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ion. 1995, 78, 123–131. [Google Scholar] [CrossRef]
- Bianchini, M.; Fauth, F.; Hartmann, P.; Brezesinski, T.; Janek, J. An in situ structural study on the synthesis and decomposition of LiNiO2. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 1808–1820. [Google Scholar] [CrossRef]
- Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule 2019, 3, 2550–2564. [Google Scholar] [CrossRef]
- Yang, C. Synthesis and characterization of active materials of Ni(OH) 2 powders. Int. J. Hydrog. Energy 2002, 27, 1071–1081. [Google Scholar] [CrossRef]
- Weiwei, E.; Cheng, J.; Yang, C.; Mao, Z. Experimental study by online measurement of the precipitation of nickel hydroxide: Effects of operating conditions. Chin. J. Chem. Eng. 2015, 23, 860–867. [Google Scholar] [CrossRef]
- Peng, M.-X.; Shen, X.-Q. Template Growth Mechanism of Spherical Ni(OH)2. J. Cent. South Univ. Technol. 2007, 14, 310–314. [Google Scholar] [CrossRef]
- Dahn, J. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure. Solid State Ion. 1990, 44, 87–97. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, W.J.; Mauger, A.; Qilu; Gendron, F.; Julien, C.M. Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material. J. Power Sources 2010, 195, 1292–1301. [Google Scholar] [CrossRef]
- Yoon, C.S.; Jun, D.; Myung, S.; Sun, Y. Structural Stability of LiNiO2 Cycled above 4.2 V. ACS Energy Lett. 2017, 2, 1150–1155. [Google Scholar] [CrossRef]
- Moshtev, R.; Zlatilova, P.; Vasilev, S.; Bakalova, I.; Kozawa, A. Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2. J. Power Sources 1999, 81–82, 434–441. [Google Scholar] [CrossRef]
- De Biasi, L.; Schiele, A.; Roca-Ayats, M.; Garcia, G.; Brezesinski, T.; Hartmann, P.; Janek, J. Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from InSitu Gas Analysis and Operando X-Ray Diffraction. ChemSusChem 2019, 12, 2240–2250. [Google Scholar] [CrossRef]
- Imhof, R. Oxidative Electrolyte Solvent Degradation in Lithium-Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation. J. Electrochem. Soc. 1999, 146, 1702–1706. [Google Scholar] [CrossRef]
- Renfrew, S.E.; McCloskey, B.D. Residual Lithium Carbonate Predominantly Accounts for First Cycle CO2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides. J. Am. Chem. Soc. 2017, 139, 17853–17860. [Google Scholar] [CrossRef] [PubMed]
Cycle Number | 1 | 2 | 3 | 4 | 5 | 6 | 7–30 | 31 | 32–59 | 61 | 62 |
---|---|---|---|---|---|---|---|---|---|---|---|
Charge C-rate | 0.1 + 0.015 | 0.1 + 0.015 | 0.1 + 0.02 | 0.1 + 0.02 | 0.1 + 0.02 | 0.1 + 0.02 | 0.2 + 0.02 | 0.2 + 0.02 | 0.2 + 0.02 | 0.2 + 0.02 | 0.1 + 0.02 |
Discharge C-rate | 0.1 + 0.015 | 0.1 + 0.015 | 0.2 | 0.33 | 0.5 | 1 | 2 | 0.2 | 2 | 0.2 | 0.1 |
Voltage range | 4.3 V–2.6 V | 4.3 V–2.6 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V | 4.3 V–3.0 V |
Sample | T.de (g/mL) | T.de (g/mL) |
---|---|---|
Ni(OH)2 | LiNiO2 | |
Ni12 (40 °C) | 1.86 | 2.56 |
Ni14 (50 °C) | 2.00 | |
Ni15 (60 °C) | 2.07 |
Sample | C-Axis (Å) | A-Axis (Å) | C/a | c/3a Ratio | (003)/(104) Integrated Ratio | Crystallite Size a (Å) | Crystallite Size c (Å) |
---|---|---|---|---|---|---|---|
LN650 | 14.1919(2) 1 | 2.87638(2) 1 | 4.9339 | 1.64465 | 1.306 | 1579.6(9) 1 | 1973(1) 1 |
LN670 | 14.1929(1) 1 | 2.87646(1) 1 | 4.9342 | 1.64471 | 1.338 | 2419.9(9) 1 | 3773(1) 1 |
LN690 | 14.1989(1) 1 | 2.87882(1) 1 | 4.9322 | 1.64406 | 1.294 | 2854.8(9) 1 | 4119(1) 1 |
Sample | Charge 4.3 V 0.1 C + 0.015 C (1st) | DC 3.0 V 0.1 C (1st) | DC 2.6 V 0.1 C (1st) | 0.1 C Eff 3.0 v (1st) | 0.1 C Eff. 2.6 v (1st) | DC 3.0 V 0.1 C (62) | Retention After 62 Cycles |
---|---|---|---|---|---|---|---|
mAh/g | mAh/g | mAh/g | % | % | mAh/g | % | |
LN650 | 250.9 | 218.4 | 223.1 | 87.0 | 89.0 | 193.3 | 88.5 |
LN670 | 253.8 | 227.2 | 231.7 | 89.5 | 91.3 | 188.0 | 82.8 |
LN690 | 252.0 | 221.9 | 225.6 | 88.1 | 89.5 | 165.5 | 74.6 |
LN670 | LN670 (ESD) | LN690 | LN690 (ESD) | LN650 | LN650 (ESD) | ||
---|---|---|---|---|---|---|---|
Li1 (3a) | x | 0 | 0 | 0 | |||
y | 0 | 0 | 0 | ||||
z | 0 | 0 | 0 | ||||
Occ. | 0.0114 | 0.0017 | 0.0029 | 0.0017 | 0.0095 | 0.0020 | |
Ni1(3b) | x | 0 | 0 | 0 | |||
y | 0 | 0 | 0 | ||||
z | 0.5 | 0.5 | 0.5 | ||||
Occ. | 0.0128 | 0.0005 | 0.0248 | 0.0005 | 0.0166 | 0.0007 | |
Ni2(3a) | x | 0 | 0 | 0 | |||
y | 0 | 0 | 0 | ||||
z | 0 | 0 | 0 | ||||
Occ. | 0.9886 | 0.0017 | 0.9971 | 0.0017 | 0.9905 | 0.0020 | |
Li2(3b) | x | 0 | 0 | 0 | |||
y | 0 | 0 | 0 | ||||
z | 0.5 | 0.5 | 0.5 | ||||
Occ. | 0.9872 | 0.0005 | 0.9752 | 0.0005 | 0.9834 | 0.0007 | |
O1 | x | 0 | 0 | 0 | |||
y | 0 | 0 | 0 | ||||
z | 0.258 | 0.258 | 0.257724 | ||||
Occ. | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | |
Rwp (%) | 6.26 | 6.13 | 5.26 |
Testing Conditions | ||||
---|---|---|---|---|
Result (mAh/g) | Current (mA/g) | Voltage Range (V) | T (°C) | Ref. |
231.7 | 20 | 4.3–2.6 | 25 | This article |
246.6 | 18 | 4.3–2.7 | 30 | [16] |
220.2 | 22.5 | 4.3–3.0 | 25 | [18] |
199 | 21 | 4.27–2.6 | [17] |
Sample | Charge 0.1 C + 0.02 C -->4.3 V-->DC 3.0 V | ||||
---|---|---|---|---|---|
DC 0.2 C mAh/g | DC 0.33 C mAh/g | DC 0.5 C mAh/g | DC 1 C mAh/g | DC 2 C mAh/g | |
LN650 | 215.5 | 210.2 | 206.0 | 201.3 | 195.3 |
LN670 | 217.4 | 211.6 | 207.1 | 202.9 | 196.5 |
LN690 | 208.3 | 201.7 | 197.0 | 191.8 | 185.6 |
ICP | Residual Li | |||
---|---|---|---|---|
Sample | Li/Me | Li2CO3 (wt.%) | LiOH (wt.%) | Li (wt.%) |
LN-670 | 1.08 | 0.92 | 1.38 | 0.57 |
LN670-W | 1.01 | 0.19 | 0.19 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Välikangas, J.; Laine, P.; Hietaniemi, M.; Hu, T.; Tynjälä, P.; Lassi, U. Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries. Appl. Sci. 2020, 10, 8988. https://doi.org/10.3390/app10248988
Välikangas J, Laine P, Hietaniemi M, Hu T, Tynjälä P, Lassi U. Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries. Applied Sciences. 2020; 10(24):8988. https://doi.org/10.3390/app10248988
Chicago/Turabian StyleVälikangas, Juho, Petteri Laine, Marianna Hietaniemi, Tao Hu, Pekka Tynjälä, and Ulla Lassi. 2020. "Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries" Applied Sciences 10, no. 24: 8988. https://doi.org/10.3390/app10248988
APA StyleVälikangas, J., Laine, P., Hietaniemi, M., Hu, T., Tynjälä, P., & Lassi, U. (2020). Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries. Applied Sciences, 10(24), 8988. https://doi.org/10.3390/app10248988