Analysis of Proteoglycan Content and Biomechanical Properties in Arthritic and Arthritis-Free Menisci
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Mechanical Examinations
2.2.1. Indentation Testings
2.2.2. Thickness Measurement
2.2.3. Evaluation of Biomechanical Results
2.3. Histological Examination and Evaluation
2.4. Statistics
3. Results
3.1. Sample Details
3.2. Biomechanical Results of the Meniscus
3.3. Proteoglycan Content
3.4. Correlation between Biomechanical Behavior and Proteoglycan Content
4. Discussion
4.1. Mechanical Properties
4.2. Proteoglycan Content
4.3. Influence of Structural Changes on Mechanical Properties
4.4. Weakness of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Destatis. Gesundheit—Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen und Prozeduren der Vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller); Statistisches Bundesamt (Destatis): Wiesbadem, Germany, 2019; p. 78. [Google Scholar]
- Schiphof, D.; van den Driest, J.J.; Runhaar, J. Osteoarthritis year in review 2017: Rehabilitation and outcomes. Osteoarthr. Cartil. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, E.; Peat, G.; Croft, P. Defining and Mapping the Person with Osteoarthritis for Population Studies and Public Health. Rheumatology 2014, 53, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummer, B. Biomechanik: Form und Funktion des Bewegungsapparates; mit 3 Tabellen; Dt. Ärzte-Verl.: Köln, Germany, 2005; Available online: https://www.aerzteblatt.de/archiv/50795/Biomechanik-Form-und-Funktion-des-Bewegungsapparates (accessed on 14 December 2020).
- Mezhov, V.; Teichtahl, A.J.; Strasser, R.; Wluka, A.E.; Cicuttini, F.M. Meniscal pathology—The evidence for treatment. Arthritis Res. Ther. 2014, 16, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyes, F.R.; Barber-Westin, S.D. Repair of complex and avascular meniscal tears and meniscal transplantation. J. Bone Jt. Surg. Am. Vol. 2010, 92, 1012–1029. [Google Scholar]
- Joshi, M.D.; Suh, J.K.; Marui, T.; Woo, S.L. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 1995, 29, 823–828. [Google Scholar] [CrossRef]
- Fithian, D.C.; Kelly, M.A.; Mow, V.C. Material Properties and Structure-Function Relationships in the Menisci. Clin. Orthop. Relat. Res. 1990, 252, 19–31. [Google Scholar] [CrossRef]
- Proctor, C.S.; Schmidt, M.B.; Whipple, R.R.; Kelly, M.A.; Mow, V.C. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 1989, 7, 771–782. [Google Scholar] [CrossRef]
- Sweigart, M.A.; Zhu, C.F.; Burt, D.M.; DeHoll, P.D.; Agrawal, C.M.; Clanton, T.O.; Athanasiou, K.A. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 2004, 32, 1569–1579. [Google Scholar] [CrossRef]
- Seitz, A.M.; Galbusera, F.; Krais, C.; Ignatius, A.; Durselen, L. Stress-relaxation response of human menisci under confined compression conditions. J. Mech. Behav. Biomed. Mater. 2013, 26, 68–80. [Google Scholar] [CrossRef]
- Chia, H.N.; Hull, M.L. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2008, 26, 951–956. [Google Scholar] [CrossRef]
- Bursac, P.; Arnoczky, S.; York, A. Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology 2009, 46, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Danso, E.K.; Makela, J.T.; Tanska, P.; Mononen, M.E.; Honkanen, J.T.; Jurvelin, J.S.; Toyras, J.; Julkunen, P.; Korhonen, R.K. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities. J. Biomech. 2015, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Danso, E.K.; Oinas, J.M.T.; Saarakkala, S.; Mikkonen, S.; Toyras, J.; Korhonen, R.K. Structure-function relationships of human meniscus. J. Mech. Behav. Biomed. Mater. 2017, 67, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.M.; Wise, B.C.; Bonnevie, E.D.; Mauck, R.L. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2019, 25, 593–608. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Pordzik, J.; Bernstein, A.; Watrinet, J.; Mayr, H.O.; Latorre, S.H.; Schmal, H.; Seidenstuecker, M. Correlation of Biomechanical Alterations under Gonarthritis between Overlying Menisci and Articular Cartilage. Appl. Sci. 2020, 10, 8673. [Google Scholar] [CrossRef]
- Abedian, R.; Willbold, E.; Becher, C.; Hurschler, C. In vitro electro-mechanical characterization of human knee articular cartilage of different degeneration levels: A comparison with ICRS and Mankin scores. J. Biomech. 2013, 46, 1328–1334. [Google Scholar] [CrossRef]
- McKee, C.T.; Last, J.A.; Russell, P.; Murphy, C.J. Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 2011, 17, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Jurvelin, J.S.; Räsänen, T.; Kolmonens, P.; Lyyra, T. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech. 1995, 28, 231–235. [Google Scholar] [CrossRef]
- Sim, S.; Chevrier, A.; Garon, M.; Quenneville, E.; Lavigne, P.; Yaroshinsky, A.; Hoemann, C.D.; Buschmann, M.D. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage. J. Orthop. Res. 2017, 35, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Hayes, W.C.; Keer, L.M.; Herrmann, G.; Mockros, L.F. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 1972, 5, 541–551. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.; Hoff, T.; Garon, M.; Zhao, F.Y. The Verification of the Mechanical Properties of Binder Jetting Manufactured Parts by Instrumented Indentation Testing. Procedia Manuf. 2015, 1, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Seidenstuecker, M.; Watrinet, J.; Bernstein, A.; Suedkamp, N.P.; Latorre, S.H.; Maks, A.; Mayr, H.O. Viscoelasticity and histology of the human cartilage in healthy and degenerated conditions of the knee. J. Orthop. Surg. Res. 2019, 14, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Lewis, J.L. Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J. Biomech. Eng. 2004, 126, 138–145. [Google Scholar] [CrossRef]
- Mulisch, M.; Welsch, U.; Romeis, B.; Aescht, E. Romeis Mikroskopische Technik, 19. Auflage; Springer: Berlin/Heidelberg, Germany, 2015; Available online: https://link.springer.com/book/10.1007/978-3-642-55190-1 (accessed on 14 December 2020).
- Sun, Y.; Mauerhan, D.R.; Kneisl, J.S.; Norton, H.J.; Zinchenko, N.; Ingram, J.; Hanley, E.N., Jr.; Gruber, H.E. Histological examination of collagen and proteoglycan changes in osteoarthritic menisci. Open Rheumatol. J. 2012, 6, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Meister, K.; Indelicato, P.A.; Spanier, S.; Franklin, J.; Batts, J. Histology of the torn meniscus: A comparison of histologic differences in meniscal tissue between tears in anterior cruciate ligament-intact and anterior cruciate ligament-deficient knees. Am. J. Sports Med. 2004, 32, 1479–1483. [Google Scholar] [CrossRef]
- Schwer, J.; Rahman, M.M.; Stumpf, K.; Rasche, V.; Ignatius, A.; Durselen, L.; Seitz, A.M. Degeneration Affects Three-Dimensional Strains in Human Menisci: In situ MRI Acquisition Combined with Image Registration. Front. Bioeng. Biotechnol. 2020, 8, 582055. [Google Scholar] [CrossRef]
- Kwok, J.; Grogan, S.; Meckes, B.; Arce, F.; Lal, R.; D’Lima, D. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: Implications for joint degeneration and osteoarthritis. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Lee, B.S.; Kim, J.M.; Yang, K.S.; Cha, E.J.; Park, J.H.; Bin, S.I. Predictors of degenerative medial meniscus extrusion: Radial component and knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2011, 19, 222–229. [Google Scholar] [CrossRef]
- Walker, P.S.; Arno, S.; Bell, C.; Salvadore, G.; Borukhov, I.; Oh, C. Function of the medial meniscus in force transmission and stability. J. Biomech. 2015, 48, 1383–1388. [Google Scholar] [CrossRef]
- Warnecke, D.; Balko, J.; Haas, J.; Bieger, R.; Leucht, F.; Wolf, N.; Schild, N.; Stein, S.; Seitz, A.; Ignatius, A.; et al. Degeneration alters the biomechanical properties and structural composition of lateral human menisci. Osteoarthr. Cartil. 2020. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.J.; Smillie, I.S. Studies on the chemical composition of the menisci of the knee joint with special reference to the horizontal cleavage lesion. Clin. Orthop. Relat. Res. 1972, 86, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Herwig, J.; Egner, E.; Buddecke, E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 1984, 43, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, P.; Ingman, A.M.; Taylor, T.K. Variations in collagen, non-collagenous proteins, and hexosamine in menisci derived from osteoarthritic and rheumatoid arthritic knee joints. J. Rheumatol. 1975, 2, 100–107. [Google Scholar]
- Lüllmann-Rauch, R. Taschenbuch Histologie, 5., Vollst. Überarb. Auflage; Thieme: Stuttgart, Germany, 2015; Available online: https://www.thieme.de/shop/Anatomie-Histologie-Embryologie/Luellmann-Rauch-Asan-Taschenlehrbuch-Histologie-9783132425293/p/000000000145900106 (accessed on 14 December 2020).
- Mow, V.C.; Arnoczky, S.P.; Douglas, W. Knee Meniscus: Basic and Clinical Foundations; Jackson, M.D., Ed.; Raven Press: New York, NY, USA, 1992; p. 208. [Google Scholar]
- Van der Kraan, P.M.; van den Berg, W.B. Anabolic and destructive mediators in osteoarthritis. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3, 205–211. [Google Scholar] [CrossRef]
- Erbagci, H.; Gumusburun, E.; Bayram, M.; Karakurum, G.; Sirikci, A. The normal menisci: In vivo MRI measurements. Surg. Radiol. Anat. SRA 2004, 26, 28–32. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pordzik, J.; Bernstein, A.; Mayr, H.O.; Latorre, S.H.; Maks, A.; Schmal, H.; Seidenstuecker, M. Analysis of Proteoglycan Content and Biomechanical Properties in Arthritic and Arthritis-Free Menisci. Appl. Sci. 2020, 10, 9012. https://doi.org/10.3390/app10249012
Pordzik J, Bernstein A, Mayr HO, Latorre SH, Maks A, Schmal H, Seidenstuecker M. Analysis of Proteoglycan Content and Biomechanical Properties in Arthritic and Arthritis-Free Menisci. Applied Sciences. 2020; 10(24):9012. https://doi.org/10.3390/app10249012
Chicago/Turabian StylePordzik, Johannes, Anke Bernstein, Hermann O. Mayr, Sergio H. Latorre, Anastasija Maks, Hagen Schmal, and Michael Seidenstuecker. 2020. "Analysis of Proteoglycan Content and Biomechanical Properties in Arthritic and Arthritis-Free Menisci" Applied Sciences 10, no. 24: 9012. https://doi.org/10.3390/app10249012
APA StylePordzik, J., Bernstein, A., Mayr, H. O., Latorre, S. H., Maks, A., Schmal, H., & Seidenstuecker, M. (2020). Analysis of Proteoglycan Content and Biomechanical Properties in Arthritic and Arthritis-Free Menisci. Applied Sciences, 10(24), 9012. https://doi.org/10.3390/app10249012