Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics
Abstract
:1. Introduction
2. State of the Art at TAE
3. Anode Effect Prediction
3.1. Data Selection and Preprocessing
3.2. Data Labeling and Dealing with Imbalance
3.3. Machine Learning Model
4. Results
5. Post Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TAE | TRIMET Aluminium SE Essen |
AE | anode effect |
PFC | perfluorocarbon |
ACM | anode current measurement |
LVP-AE | low voltage propagating anode effects |
NP-AE | non-propagating anode effects |
IR | imbalance ratio |
KEEL | knowledge extraction based on evolutionary learning |
References
- Haupin, W.; Seger, E.J. Aiming for Zero Anode Effects. In Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 767–773. [Google Scholar] [CrossRef]
- Grjotheim, K.; Kvande, H. Introduction to Aluminium Electrolysis; Alu Media GmbH: Düsseldorf, Germany, 1993. [Google Scholar]
- Thonstad, J.; Utigard, T.A.; Vogt, H. On the anode effect in aluminum electrolysis. In Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 131–138. [Google Scholar] [CrossRef]
- Wong, D.S.; Tabereaux, A.; Lavoie, P. Anode Effect Phenomena During Conventional AEs, Low Voltage Propagating AEs & Non-Propagating AEs. In Light Metals 2014; Springer: Cham, Switzerland, 2014; pp. 529–534. [Google Scholar] [CrossRef]
- Mulder, A.; Lavoie, P.; Düssel, R. Effect of Early Abnormality Detection and Feed Control Improvement on Reduction Cells Performance. In Proceedings of the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand, 2–7 December 2018. [Google Scholar]
- Thorhallsson, A.I. Anode Effect Reduction at Nordural—Practical Points. In Light Metals 2015; Springer: Cham, Switzerland, 2015; pp. 539–542. [Google Scholar] [CrossRef]
- Fardeau, S.; Martel, A.; Marcellin, P.; Richard, P. Statistical Evaluation and Modeling of the Link between Anode Effects and Bath Height, and Implications for the ALPSYS Pot Control System. In Light Metals 2014; Springer: Cham, Switzerland, 2014; pp. 845–850. [Google Scholar] [CrossRef]
- Kremser, R.; Grabowski, N.; Düssel, R.; Kessel, K.; Tutsch, D. Investigation of Different Measurement Techniques for Individual Anode Currents in Hall-Héroult Cells. In Proceedings of the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand, 2–7 December 2018. [Google Scholar]
- Chen, Z.; Li, Y.; Chen, X.; Yang, C.; Gui, W. Anode effect prediction based on collaborative two-dimensional forecast model in aluminum electrolysis production. J. Ind. Manag. Optim. 2019, 15, 595–618. [Google Scholar] [CrossRef] [Green Version]
- Dion, L.; Lagacé, C.; Laflamme, F.; Godefroy, A.; Evans, J.W.; Kiss, L.I.; Poncsák, S. Preventive Treatment of Anode Effects Using on-Line Individual Anode Current Monitoring. In Light Metals 2017; Springer: Cham, Switzerland, 2017; pp. 509–517. [Google Scholar] [CrossRef]
- Cheung, C.; Menictas, C.; Bao, J.; Skyllas-Kazacos, M.; Welch, B.J. Frequency response analysis of anode current signals as a diagnostic aid for detecting approaching anode effects in aluminum smelting cells. In Light Metals 2013; Springer International Publishing: Cham, Switzerland, 2003; pp. 887–892. [Google Scholar] [CrossRef]
- da Costa, F.; Paulino, L. Computer Algorithm to predict Anode effect Events. In Light Metals 2012; Springer: Cham, Switzerland, 2012; pp. 655–656. [Google Scholar] [CrossRef]
- Wilson, A.; Illingworth, M.; Pearman, M. Anode Effect Prediction and Pre-Emptive Treatment at Pacific Aluminium. In Proceedings of the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand, 2–7 December 2018. [Google Scholar]
- Zhang, Y. Study on Anode Effect Prediction of Aluminium Reduction Applying Wavelet Packet Transform. In Communications in Computer and Information Science; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; pp. 477–484. [Google Scholar] [CrossRef]
- Majid, N. Cascade Fault Detection and Diagnosis for the Aluminium Smelting Process using Multivariate Statistical Techniques. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2011. [Google Scholar]
- Zhang, Z.; Xu, G.; Wang, H.; Zhou, K. Anode Effect prediction based on Expectation Maximization and XGBoost model. In Proceedings of the 2018 IEEE 7th Data Driven Control and Learning Systems Conference, Enshi, China, 25–27 May 2018; pp. 560–564. [Google Scholar] [CrossRef]
- Tabereaux, A. Prebake cell technology: A global review. JOM 2000, 52, 23–29. [Google Scholar] [CrossRef]
- Zarouni, A.; Reverdy, M.; Zarouni, A.A.; Venkatasubramaniam, K.G. A Study of Low Voltage PFC Emissions at Dubal. In Light Metals 2013; Springer International Publishing: Cham, Switzerland, 2013; pp. 859–863. [Google Scholar] [CrossRef]
- Fulcher, B.D.; Little, M.A.; Jones, N.S. Highly comparative time-series analysis: The empirical structure of time series and their methods. J. R. Soc. Interface 2013, 10, 20130048. [Google Scholar] [CrossRef] [PubMed]
- Lubba, C.H.; Sethi, S.S.; Knaute, P.; Schultz, S.R.; Fulcher, B.D.; Jones, N.S. catch22: CAnonical Time-series CHaracteristics. Data Min. Knowl. Discov. 2019, 33, 1821–1852. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.; Wang, E.; Laptev, N. Large-Scale Unusual Time Series Detection. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015. [Google Scholar] [CrossRef]
- Garza, F.; Gutierrez, K.; Challu, C.; Moralez, J.; Olivares, R.; Mergenthaler, M. tsfeatures. Available online: https://github.com/FedericoGarza/tsfeatures (accessed on 10 November 2020).
- Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from Imbalanced Data Sets; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, J. Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning; Machine Learning Mastery: Vermont Victoria, Australia, 2020. [Google Scholar]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 559–563. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media: Sebastopol, CA, USA, 2016. [Google Scholar]
Tsfeatures | Catch22 |
---|---|
acf_features_x_acf1 | DN_HistogramMode_5 |
acf_features_x_acf10 | DN_HistogramMode_10 |
acf_features_diff1_acf1 | CO_f1ecac |
acf_features_diff1_acf10 | CO_FirstMin_ac |
acf_features_diff2_acf1 | CO_HistogramAMI_even_2_5 |
acf_features_diff2_acf10 | CO_trev_1_num |
count_entropy | MD_hrv_classic_pnn40 |
crossing_points | SB_BinaryStats_mean_longstretch1 |
flat_spots | SB_TransitionMatrix_3ac_sumdiagcov |
lumpiness | PD_PeriodicityWang_th0_01 |
nonlinearity | IN_AutoMutualInfoStats_40_gaussian_fmmi |
sparsity | FC_LocalSimple_mean1_tauresrat |
stability | DN_OutlierInclude_p_001_mdrmd |
unitroot_kpss | DN_OutlierInclude_n_001_mdrmd |
unitroot_pp | SP_Summaries_welch_rect_area_5_1 |
SB_BinaryStats_diff_longstretch0 | |
SB_MotifThree_quantile_hh | |
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 | |
SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 | |
SP_Summaries_welch_rect_centroid | |
FC_LocalSimple_mean3_stderr |
Logistic Regression | penalty: C: |
Random Forest Classifier | n_estimators: max_features: max_depth: min_samples_split: min_samples_leaf: |
eXtreme Gradient Boosting | n_estimators: learning_rate: max_depth: |
Linear Support Vector Classifier | penalty: C: |
# | Features | Sampling | Best Validation | Best Model | F1 |
---|---|---|---|---|---|
1 | all features except all time series features | NearMiss-3 | KFold | Random Forest | 0.8 |
2 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | Random Undersampler | KFold | Random Forest | 0.5 |
3 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-1 | all | all | 0 |
4 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | Stratified KFold | Random Forest | 15.7 |
5 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | Stratified KFold | Random Forest | 16.8 |
6 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | KFold | Random Forest | 27.4 |
7 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | KFold | Random Forest | 17.8 |
8 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | KFold | Random Forest | 18.6 |
9 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | KFold | Random Forest | 18.7 |
10 | all features except catch22 ( 60 , 5 ) and tsfeatures ( 60 , 5 ) | NearMiss-3 | KFold | Random Forest | 18.9 |
11 | all features except catch22 ( 10 , 1 ) and tsfeatures ( 10 , 1 ) | NearMiss-3 | Stratified KFold | Random Forest | 3.9 |
12 | all features | Random Undersampler | Stratified KFold | Random Forest | 0.7 |
13 | all features | NearMiss-1 | all | all | 0 |
14 | all features | NearMiss-3 | KFold | Random Forest | 15.2 |
15 | all features | NearMiss-3 | Stratified KFold | Random Forest | 14.4 |
16 | all features | NearMiss-3 | KFold | Random Forest | 29.3 |
17 | all features | NearMiss-3 | KFold | Random Forest | 15.7 |
18 | all features | NearMiss-3 | KFold | Random Forest | 15.4 |
19 | all features | NearMiss-3 | KFold | Random Forest | 15.8 |
20 | all features | NearMiss-3 | KFold | Random Forest | 15.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremser, R.; Grabowski, N.; Düssel, R.; Mulder, A.; Tutsch, D. Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics. Appl. Sci. 2020, 10, 9050. https://doi.org/10.3390/app10249050
Kremser R, Grabowski N, Düssel R, Mulder A, Tutsch D. Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics. Applied Sciences. 2020; 10(24):9050. https://doi.org/10.3390/app10249050
Chicago/Turabian StyleKremser, Ron, Niclas Grabowski, Roman Düssel, Albert Mulder, and Dietmar Tutsch. 2020. "Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics" Applied Sciences 10, no. 24: 9050. https://doi.org/10.3390/app10249050
APA StyleKremser, R., Grabowski, N., Düssel, R., Mulder, A., & Tutsch, D. (2020). Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics. Applied Sciences, 10(24), 9050. https://doi.org/10.3390/app10249050