Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Silicone Materials
2.1.2. Ceramic Materials
2.1.3. Additional Materials
2.1.4. The Tested System in a Form of a Hybride Silicone-Ceramic Composite and Soft Ballistic Inserts
- outer layers made of elastomer;
- inner layer made of ceramic elements placed on the carrier film;
- reinforcement layers made of aramid fabrics and/or foamed polymer materials.
2.2. Manufacture of Hybrid Silicone-Ceramic Composites
- up to 120 min in the case of MM 922 silicone,
- up to 30 min for Za 22 Mold silicone,
- up to 50 min for MM 228 silicone.
2.3. Methods
2.3.1. Density
- ρ—sample density (g/cm3),
- A—weight of sample in air (g),
- B—weight of sample in liquid (g),
- ρ0—density of liquid (g/cm3).
2.3.2. Tear Strength with Static Tensile of Silicones
2.3.3. Silicone Elastomers Hardness
2.3.4. Structural Testing of Elastomers Using FT-IR
2.3.5. Methodology of Physical and Mechanical Testing of Al2O3Ceramic Elements
2.3.6. Determination of the HSC Composite Mass Per Unit Area
- mi—material mass, [g];
- d—material length calculated as an arithmetic mean of 3 length measurements, [mm];
- s—material width calculated as an arithmetic mean of 3 width measurements, [mm].
2.3.7. Fragmentation Resistance Test
2.3.8. Impact Tests
3. Results and Discussion
3.1. Analysis of the Results of Physical, Mechanical and Structural Tests of Silicones Used for the HSC Composites Production
3.2. Analysis of the Properties of Ceramic Elements Used to Produce Hybrid Silicone-Ceramic Composites
3.3. Fragmentation Resistance Test Results
- soft ballistic inserts containing 42 layers of Twaron®CT612;
- silicone elastomers used in conjunction with soft ballistic insert containing 42 layers of Twaron®CT612;
- HSC composites containing Al2O3 ceramics with a thickness of (3.0 ± 0.2) mm used in conjunction with soft ballistic insert containing 42 layers of Twaron®CT612;
- HSC composites containing Al2O3 ceramics with a thickness of (3.5 ± 0.2) mm used in conjunction with soft ballistic insert containing 42 layers of Twaron®CT612;
- HSC composites containing Al2O3 ceramics with a thickness of (3.5 ± 0.2) mm, without reinforcing layers in the form of Poron®XRDMA and Twaron®CT612 sheets, used in conjunction with soft ballistic insert containing 42 layers of Twaron®CT612.
- bullet and armor collision;
- initial penetration of the bullet into the armor at a constant speed;
- braking the bullet by the inertial and strength forces of the armor material;
- final crater formation.
3.4. Impact Test Results
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, N. Bulletproof vest and its improvement—A review. IJTSRD 2016, 1, 34–39. [Google Scholar]
- Yang, Y.; Chen, X. Determination of materials for hybrid design of 3D soft body armour panels. Appl. Compos. Mater. 2018, 25, 861–875. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design. Compos. Struct. 2017, 164, 1–9. [Google Scholar]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A review of fibrous materials for soft body armour applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- National Institute for Justice. 0101.04 Standard, Ballistic Resistance of Personal Body Armour; U.S. Department for Justice: Washington, DC, USA, 2000.
- Azrin Hani, A.R.; Roslan, A.; Mariatti, J.; Maziah, M. Body armor technology: A review of materials, construction techniques and enhancement of ballistic energy absorption. Adv. Mat. Res. 2012, 488–489, 806–812. [Google Scholar]
- Perry, A. Ballistic-resistant body armor: Problems and coping strategies. J. Text. Appar. Technol. Manag. 2018, 10, 1–14. [Google Scholar]
- Fejdyś, M.; Kośla, K.; Kucharska-Jastrząbek, A.; Łandwijt, M. Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres. Fibres Text. East. Eur. 2016, 24, 79–89. [Google Scholar] [CrossRef]
- Crouch, I.G. Body armour—New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Cegła, M.; Habaj, W.; Stępniak, W.; Podgórzak, P. Hybrid ceramic-textile composite armour structures for a strengthened bullet-proof vest. Fibres Text. East. Eur. 2015, 23, 85–88. [Google Scholar]
- Ruys, A.J. (Ed.) Alumina in lightweight body armor. In Alumina Ceramics: Biomedical and Clinical Applications; Woodhead Publishing: Cambridge, UK, 2019; pp. 321–368. [Google Scholar]
- Bracamonte, L.; Loutfy, R.; Yilmazcoban, I.K.; Rajan, S.D. Design, manufacture, and analysis of ceramic-composite armor. In Lightweight Ballistic Composites: Military and Law-Enforcement Applications, 2nd ed.; Bathnagar, A., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 349–367. [Google Scholar]
- Su, C.; Chen, B. Study on effective protective area of ceramic composite target. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 1–7. [Google Scholar] [CrossRef]
- Song, H.; Bless, S.J.; Jang, S.-D. Tile size dependency of ballistic performance in alumina. J. Korean Ceram. Soc. 1995, 32, 366–370. [Google Scholar]
- Hazell, P.J.; Roberson, C.J.; Moutinho, M. The design of mosaic armour: The influence of tile size on ballistic performance. Mater. Des. 2008, 29, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Appleby-Thomas, G.J.; Jaansalu, K.; Hameed, A.; Painter, J.; Shackel, J.; Rowley, J. A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina. Def. Technol. 2020, 16, 275–282. [Google Scholar] [CrossRef]
- Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram. Int. 2010, 36, 2103–2115. [Google Scholar]
- Okhawilai, M.; Hiziroglu, S.; Rimdusit, S. Measurement of ballistic impact performance of fiber reinforced polybenzoxazine/polyurethane composites. Measurement 2018, 130, 198–210. [Google Scholar] [CrossRef]
- Camposo Pereira, A.; Salgado de Assis, F.; Costa Garcia Filho, F.; Souza Oliveira, M.; Cruz Demosthenes, L.C.; Colorado Lopera, H.A.; Neves Monteiro, S. Ballistic performance of multilayered armor with intermediate polyester composite reinforced with fique natural fabric and fibers. J. Mater. Res. Technol. 2019, 8, 4221–4226. [Google Scholar] [CrossRef]
- Costa Garcia Filho, F.C.; Monteiro Neves, S. Piassava fiber as an epoxy matrix composite reinforcement for ballistic armor applications. JOM 2019, 71, 801–808. [Google Scholar]
- Abdullah, S.; Abdullah, M.F.; Jamil, W.N.M. Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle. J. Mech. Eng. Sci. 2020, 14, 6452–6460. [Google Scholar] [CrossRef] [Green Version]
- Kędzierski, P.; Gieleta, R.; Morka, A.; Niezgoda, T.; Surma, Z. Experimental study of hybrid soft ballistic structures. Compos. Struct. 2016, 153, 204–211. [Google Scholar] [CrossRef]
- Goode, T.; Shoemaker, G.; Schultz, S.; Peters, K.; Pankow, M. Soft body armor time-dependent back face deformation (BFD) with ballistics gel backing. Compos. Struct. 2019, 220, 687–698. [Google Scholar] [CrossRef]
- Varma, T.V.; Sarkat, S. Designing polymer metamaterial for protective armor: A coarse-grained formulation. Meccanica 2020, 1–10. [Google Scholar] [CrossRef]
- Colombo, P.; Zordan, F.; Medvedovski, E. Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 2006, 105, 78–83. [Google Scholar] [CrossRef]
- Cohen, M. Composite Armor Plate. U.S. Patent 2,005,007,229,4A1, 7 April 2005. [Google Scholar]
- Wiśniewski, A.B.; Pacek, D.B.; Żochowski, P.; Wierzbicki, Ł.; Kozłowska, J.; Zielińska, D.; Olszewska, K.; Grabowska, G.; Błaszczyk, J.; Pawłowska, A.; et al. Elastic Armour. Patent No. PL224825 (B1), 28 February 2017. [Google Scholar]
- Gamache, R.M.; Roland, C.M. Body Armor of Ceramic Ball Embedded Polymer. U.S. Patent 2,012,031,215,0A1, 13 December 2012. [Google Scholar]
- Martin, C.A.; Lee, G.F.; Fedderly, J.J. Composite Ballistic Armor Having Geometric Ceramic Elements for Shock Wave Attenuation. U.S. Patent 768,592,2B1, 30 March 2010. [Google Scholar]
- National Institute for Justice. Standard 0117.01 Public Safety Bomb Suit Standard; U.S. Department for Justice: Washington, DC, USA, 2016.
- PBCH-09/2017. Density Determination by Hydrostatic Method.
- PN-EN ISO 868:2005. Plastics and Ebonite—Determination of Identification Hardness by Means of Durometer (Shore Hardness). Available online: https://sklep.pkn.pl/pn-en-iso-868-2005p.html (accessed on 19 December 2020).
- PN-ISO–37:2007 Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. Available online: https://sklep.pkn.pl/pn-iso-37-2007p.html (accessed on 19 December 2020).
- BS EN 993-1:1995, Methods of Test for Dense Shaped Refractory Products—Part 1: Determination of Bulk Density, Apparent Porosity and True Porosity. Available online: https://infostore.saiglobal.com/en-us/standards/bs-en-993-1-1995-204239_saig_bsi_bsi_484986/ (accessed on 19 December 2020).
- ASTM C 1419-99a, Standard Test Method for Sonic Velocity in Refractory Materials at Room Temperature and Its Use in Obtaining an Approximate Young’s Modulus. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/C1419-99A.htm (accessed on 19 December 2020).
- PN-EN ISO 6507-1:2018-05, Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Available online: https://sklep.pkn.pl/pn-en-iso-6507-1-2018-05p.html (accessed on 19 December 2020).
- PN-EN 1773:2003 Textiles—Flat Textiles—Determination of Width and Length. Available online: https://sklep.pkn.pl/pn-en-1773-2000p.html (accessed on 19 December 2020).
- PN-ISO 3801:1993 Textiles—Fabrics—Determination of Linear and Area Mass. Available online: https://sklep.pkn.pl/pn-iso-3801-1993p.html (accessed on 19 December 2020).
- PN-EN 1049-2:2000 Textiles—Methods for Analyzing the Structure of Woven Products—Determining the Number of Threads Per Unit Length. Available online: https://infostore.saiglobal.com/en-us/standards/PN-EN-1049-2-2000-932508_SAIG_PKN_PKN_2198013/ (accessed on 19 December 2020).
- PN-EN ISO 5084:1999 Textiles—Determination of Thickness of Textiles and Textile Products. Available online: https://www.iso.org/standard/23348.html (accessed on 19 December 2020).
- PN-EN ISO 13934-1:2013-07 Textiles—Tensile Properties of Fabrics—Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method. Available online: https://sklep.pkn.pl/pn-en-iso-13934-1-2013-07e.html (accessed on 19 December 2020).
- PN-EN ISO 2286-2:2016-11 Rubber- or Plastics-Coated Fabrics. Determination of Roll Characteristics. Methods for Determination of Total Mass Per Unit Area, Mass Per Unit Area of Coating and Mass Per Unit Area of Substrate. Available online: https://sklep.pkn.pl/pn-en-iso-2286-2-2016-11e.html (accessed on 19 December 2020).
- PN-EN ISO 1798:2001 Flexible Cellular Polymeric Materials—Determination of Tensile Strength and Elongation at break. Available online: https://sklep.pkn.pl/pn-en-iso-1798-2001p.html (accessed on 19 December 2020).
- PN-EN ISO 8067:2009 Flexible Cellular Polymeric Materials Tear Strength. Available online: https://standards.iteh.ai/catalog/standards/sist/a014d72d-6be9-401e-914f-c2a35767afc7/sist-en-iso-8067-2009 (accessed on 19 December 2020).
- PBCH-02/2014 Spectrophotometric Analysis of Spectra in the Aspect of Determining the Raw Material Composition in Selected Textile Materials.
- PN-79/H-04361, Measuring the Hardness of Metals Vickers Method With Loads of Less Than 9.8 N.
- PN-EN ISO 4674-1:2017-02 Rubber—Or Plastics-Coated Fabrics—Determination of Tear Resistance—Part 1: Constant Rate of Tear Methods. Available online: https://sklep.pkn.pl/catalogsearch/advanced/result/?date_publication%5Bfrom%5D=oybrdlui&dir=desc&limit=25&order=standard_number&p=1585 (accessed on 19 December 2020).
- PBB-09 Ballistic research. Determination of Fragment Resistance of a Set of Samples.
- STANAG 2920 Ballistic Test Method for Personal Armour Materials and Combat Clothing.
- PBB-07 ed. II: 12.2008 Impact tests. Determining the level of impact energy attenuation for body protectors.
- BS 7971-1:2002 Protective Clothing and Equipment for Use in Violent Situations and in Training. General Requirements. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030016991 (accessed on 19 December 2020).
- Kaufmann, C.; Cronin, D.; Worswick, M.; Pageauband, G.; Beth, A. Influence of material properties on the ballistic performance of ceramics for personalbodyarmour. Shock. Vib. 2003, 10, 51–58. [Google Scholar] [CrossRef]
- Fejdyś, M.; Kośla, K.; Kucharska-Jastrząbek, A.; Łandwjit, M. Influence of ceramic properties on the ballistic performance of the hybrid ceramic—Multi-layered UHMWPE composite armour. J. Aust. Ceram. Soc. 2020, 56, 1–13. [Google Scholar] [CrossRef]
- Rahbek, D.B.; Johnsen, B.B. Dynamic Behaviour of Ceramic Armour Systems; Report of the Norwegian Defence Research Establishment (FFI): Kjeller, Norway, 2015; ISBN 978-82-464-2609-9. [Google Scholar]
- Krell, A.; Strassburger, E. Order of influences on the ballistic resistance of armor ceramics and single crystals. Mater. Sci. Eng. 2014, 597, 422–430. [Google Scholar] [CrossRef]
- Cegła, M.; Habaj, W.; Podgórzak, P. Carbide ceramics in lightweight armour applications. Cer. Mater. 2015, 2, 132–136. [Google Scholar]
- Arora, S.; Ghosh, A. Evolution of soft body. In Advanced Textile Engineering Materials; ul-Islam, S., Butola, B.S., Eds.; Wiley Scrivener: Austin, TX, USA, 2018; pp. 499–552. [Google Scholar]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact. Compos. Struct. 2004, 66, 579–590. [Google Scholar] [CrossRef]
- Majumdar, A.; Butola, B.S.; Srivastava, A. An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials. Mater. Des. 2013, 51, 148–153. [Google Scholar] [CrossRef]
- Cegła, M. Special ceramics in multilayer ballistic protection systems. Issues Armament Technol. 2018, 147, 63–74. [Google Scholar] [CrossRef]
- Grujicic, M.; Pandurangan, B.; Zecevic, U.; Koudela, K.L.; Cheeseman, B.A. Ballistic Performance of Alumina/S-2 glass reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (AP) and non-AP projectiles. Multidiscip. Model. Mater. Struct. 2007, 3, 287–312. [Google Scholar] [CrossRef] [Green Version]
- Demir, T.; Ubeyli, M.; Yildirim, R.; Karakas, M.S. Investigation on the ballistic performance of alumina/4340 steel laminated composite armor against 7.62 mm armor piercing projectiles. Metal 2008, 3, 1–7. [Google Scholar]
- Magier, M. Methods of estimating the armor penetration depth by kinetic projectiles. Issues Armament Technol. 2007, 101, 103–115. [Google Scholar]
- Rama Subba Reddy, P.; GeasinSavio, S.; Madhu, V. Ceramic composite armour for ballistic protection. In Handbook of Advanced Ceramics and Composites; Mahajan, Y., Roy, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–43. [Google Scholar]
- Hogan, J.D.; Farbaniec, L.; Mallick, D.; Domnich, V.; Kuwelkar, K.; Sano, T.; McCauley, J.W.; Ramesh, K.T. Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure. Int. J. Impact Eng. 2017, 102, 47–54. [Google Scholar] [CrossRef]
- Iremonger, M.J.; Went, A.C. Ballistic impact of fibre composite armours by fragment-simulating projectiles. Compos. Part A Appl. Sci. Manuf. 1996, 27A, 575–581. [Google Scholar] [CrossRef]
- Naebe, M.; Sandlin, J.; Crouch, I.; Fox, B. Novel polymer-ceramic composites for protection against ballistic fragments. Polym. Compos. 2013, 34, 180–186. [Google Scholar] [CrossRef]
- Aziz, M.R.; Zainol, M.F.; Othman, R. An experimental study on ballistic limit of aluminum plate subjected to fragment-simulating projectile. J. Fail. Anal. Preven. 2020, 20, 2059–2064. [Google Scholar] [CrossRef]
- Nguyen, T.-T.N.; Meek, G.; Breeze, J.; Masouros, S.D. Gelatine Backing affects the performance of single-layer ballistic-resistant materials against blast fragments. Front. Bioeng. Biotechnol. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Hsieh, A.J.; DeSchepper, D.; Moy, P.; Dehmer, P.G.; Song, J.W. The Effects of PMMA on Ballistic Impact Performance of Hybrid Hard/Ductile All-Plastic- and Glass-Plastic-Based Composites; Army Research Laboratory, Aberdeen Proving Ground, MD: Aberdeen, WA, USA, 2004. [Google Scholar]
No. | Parameter | Unit | Results | Test Method | ||
---|---|---|---|---|---|---|
1. | Silicone name | --- | Za 22 Mould | MM 228 | MM 922 | manufacturer’s technical specification |
2. | Density | g/cm3 | 1.09 ± 0.04 | 1.11 ± 0.01 | 1.23 ± 0.01 | PBCH-09/2017 [31] |
3. | Hardness | ShA | 20 ± 1 | 28 ± 2 | 22 ± 1 | PN-EN ISO 868:2005 [32] |
4. | Tear strength under static stretching | MPa | 3.35 ± 0.16 | 1.54 ± 0.32 | 3.64 ± 0.18 | PN-ISO–37:2007 [33] |
5. | Breaking strength | MPa | 4.0 | 5.06 | 3.6 | manufacturer’s technical specification |
6. | Elongation at break | % | 380 | 746 | 497 | |
7. | Tensile strength | kN/m | 20.0 | 31.0 | 26.2 | |
8. | Viscosity | mPas | 4000 | 13,000 | 19,000 | |
9. | Lifetime | min | 15 | 55 | 45–120 | |
10. | Demolding time | h | 1 | 5 | 8–12 |
Parameter | Density [g/cm3] | Young’s Modulus [GPa] | Acoustic Impedance [105 g/cm2 s] | Vickers Hardness [GPa] | Resistance to Brittle Fracturing, [MPa m1/2] |
---|---|---|---|---|---|
Test method | PN-EN 993-1:1998 [34] | ASTM C 1419-99a [35] | PN-EN-ISO 6507-1:2007 [36] | ||
Al2O3 3.0 mm thickness | 3.81 ± 0.1 | 464.0 ± 8.0 | 40.0 ± 0.2 | 15.4 ± 0.4 | 4.29 ± 0.4 |
Al2O3 3.5 mm thickness | 3.81 ± 0.1 | 472.6 ± 10.0 | 40.0 ± 0.2 | 18.9 ± 0.3 | 4.32 ± 0.3 |
No. | Parameter | Unit | Results of Metrological Tests | Test Method | |
---|---|---|---|---|---|
1 | Width | m | 1.31 ± 0.01 | PN-EN 1773:2003 [37] | |
2 | Areal density | g/m2 | 123 ± 1 | PN-ISO 3801:1993 [38] | |
3 | Number of threads | -warp | cm/dm | 112 ± 2 | PN-EN 1049-2:2000 [39] |
-weft | 108 ± 2 | ||||
4 | Thickness | mm | 0.18 ± 0.02 | PN-EN ISO 5084:1999 [40] | |
5 | Maximum force | -warp | N | 5700 ± 205 | PN-EN ISO 13934-1:2013-07 [41] |
-weft | 5800 ± 211 | ||||
6 | Elongation at rupture | -warp | % | 4.2 | PN-EN ISO 13934-1:2013-07 [41] |
-weft | 5.0 |
No. | Parameter | Unit | Results of Metrological Tests | Test Method |
---|---|---|---|---|
1 | Density | g/cm3 | 0.19 ± 0.01 | PBCH-09/2017 [31] |
2. | Thickness | mm | 3.0 ± 0.2 | PN-EN ISO 5084:1999 [40] |
3. | Areal density | g/m2 | 555 ± 12 | PN-EN ISO 2286-2:2016 [42] |
4. | Tensile strength | kPa | 446 ± 29 | PN-EN ISO 1798:2001 [43] |
5. | Tear strength | N/m | 297 ± 44 | PN-EN ISO 8067:2009 [44] |
No. | Sample Composition | V50 [m/s] | |||
---|---|---|---|---|---|
Silicone Used in Conjunction with Soft Ballistic Armor | Hybrid Silicone-Ceramic Composites (HSC) Composite Used in Conjunction with Soft Ballistic Armor, Consisting of: | ||||
Al2O3 Ceramics 3.0 mm Thickness and Reinforcing Layer | Al2O3 Ceramics 3.5 mm Thickness and Reinforcing Layer | Al2O3 Ceramics 3.0 mm Thickness without Reinforcing Layer | |||
1. | MM 922 | 712.6 ± 20.0 | 1288.8 ± 20.1 | 1526.8 ± 21.9 | 1530.7 ± 24.3 |
2. | MM 228 | 709.9 ± 20.2 | 1324.0 ± 24.4 | 1538.9 ± 23.2 | 1554.0 ± 23.8 |
3. | Za 22 Mould | 718.4 ± 23.2 | 1258.6 ± 20.6 | 1543.6 ± 21.8 | 1546.3 ± 19.8 |
No. | Composition of Samples | Surface Mass (kg/m2) | Maximum Force Transmitted under the Sample (kN) |
---|---|---|---|
Silicone samples: | |||
1. | MM 922 silicon | 11.7 ± 0.4 | 5.27 ± 0.22 |
2. | MM 228 silicon | 12.0 ± 0.5 | 4.00 ± 0.12 |
3. | Za 22 Mould silicon | 11.8 ± 0.5 | 4.33 ± 0.28 |
Hybrid silicone-ceramic composite containing Al2O3 ceramics (3.0 mm thick) and silicone: | |||
4. | MM 922 | 18.1 ± 0.5 | 5.58 ± 0.10 |
5. | MM 228 | 18.4 ± 0.6 | 4.54 ± 0.16 |
6. | Za 22 Mould | 17.7 ± 0.6 | 4.72 ± 0.19 |
Samples of commercial systems containing polymer: | |||
7. | EVA | 3.2 ± 0.3 | 1.77 ± 0.17 |
8. | Poron®XRDMA | 3.3 ± 0.3 | <4.0 |
9. | EVA+EPDM | 0.9 ± 0.2 | 2.40 ± 0.15 |
10. | PE | 1.0 ± 0.4 | 1.64 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kośla, K.; Kubiak, P.; Fejdyś, M.; Olszewska, K.; Łandwijt, M.; Chmal-Fudali, E. Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites. Appl. Sci. 2020, 10, 9098. https://doi.org/10.3390/app10249098
Kośla K, Kubiak P, Fejdyś M, Olszewska K, Łandwijt M, Chmal-Fudali E. Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites. Applied Sciences. 2020; 10(24):9098. https://doi.org/10.3390/app10249098
Chicago/Turabian StyleKośla, Katarzyna, Paweł Kubiak, Marzena Fejdyś, Karolina Olszewska, Marcin Łandwijt, and Edyta Chmal-Fudali. 2020. "Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites" Applied Sciences 10, no. 24: 9098. https://doi.org/10.3390/app10249098
APA StyleKośla, K., Kubiak, P., Fejdyś, M., Olszewska, K., Łandwijt, M., & Chmal-Fudali, E. (2020). Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites. Applied Sciences, 10(24), 9098. https://doi.org/10.3390/app10249098