How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma Deposition in LP and Aerosol-Assisted AP
2.3. Chemical and Physical and Biological Characterization of Materials
3. Results
3.1. LP Plasma Deposition of Differently Cell-Repulsive Coatings
3.2. Aerosol-Assisted AP Plasma Deposition of Organic Coatings Starting from a Monomer with “Cell-Repulsive” Motifs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Massines, F.; Sarra-Bournet, C.; Fanelli, F.; Naudé, N.; Gherardi, N. Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition. Plasma Process. Polym. 2012, 9, 1041–1073. [Google Scholar] [CrossRef]
- Vasilev, K.; Michelmore, A.; Martinek, P.; Chan, J.; Sah, V.; Griesser, H.J.; Short, R.D. Early stages of growth of plasma polymer coatings deposited from nitrogen- and oxygen-containing monomers. Plasma Process. Polym. 2010, 7. [Google Scholar] [CrossRef]
- Goreham, R.V.; Mierczynska, A.; Pierce, M.; Short, R.D.; Taheri, S.; Bachhuka, A.; Cavallaro, A.; Smith, L.E.; Vasilev, K. A substrate independent approach for generation of surface gradients. Thin Solid Film. 2013, 528, 106–110. [Google Scholar] [CrossRef]
- Sardella, E.; Palumbo, F.; Camporeale, G.; Favia, P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Mater. (Basel) 2016, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Förch, R.; Zhang, Z.; Knoll, W. Soft plasma treated surfaces: Tailoring of structure and properties for biomaterial applications. Plasma Process. Polym. 2005, 2, 351–372. [Google Scholar] [CrossRef]
- Michelmore, A.; Whittle, J.D.; Bradley, J.W.; Short, R.D. Where physics meets chemistry: Thin film deposition from reactive plasmas. Front. Chem. Sci. Eng. 2016, 10, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Detomaso, L.; Gristina, R.; Senesi, G.S.; D’Agostino, R.; Favia, P. Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 2005, 26, 3831–3841. [Google Scholar] [CrossRef]
- Sardella, E.; Favia, P.; Dilonardo, E.; Petrone, L.; d’Agostino, R. PE-CVD of acid/base coatings from acrylic acid and allylamine vapours. Plasma Process. Polym. 2007, 4. [Google Scholar] [CrossRef]
- Hubert, J.; Vandencasteele, N.; Mertens, J.; Viville, P.; Dufour, T.; Barroo, C.; Visart De Bocarmé, T.; Lazzaroni, R.; Reniers, F. Chemical and Physical Effects of the Carrier Gas on the Atmospheric Pressure PECVD of Fluorinated Precursors. Plasma Process. Polym. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Chronos, N.A.F.; Apkarian, R.P.; Robinson, K.A. Scanning electron microscopic analysis of defects in polymer coatings of three commercially available stents: Comparison of BiodivYsio, Taxus and Cypher stents. J. Invasive Cardiol. 2007, 19, 71. [Google Scholar]
- Morent, R.; De Geyter, N.; Van Vlierberghe, S.; Beaurain, A.; Dubruel, P.; Payen, E. Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog. Org. Coat. 2011, 70. [Google Scholar] [CrossRef]
- Nisol, B.; Poleunis, C.; Bertrand, P.; Reniers, F. Poly(ethylene glycol) films deposited by atmospheric pressure plasma liquid deposition and atmospheric pressure plasma-enhanced chemical vapour deposition: Process, chemical composition analysis and biocompatibility. Plasma Process. Polym. 2010, 7. [Google Scholar] [CrossRef]
- Sardella, E.; Salama, R.A.; Waly, G.H.; Habib, A.N.; Favia, P.; Gristina, R. Improving Internal Cell Colonization of Porous Scaffolds with Chemical Gradients Produced by Plasma Assisted Approaches. ACS Appl. Mater. Interfaces 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Hwang, I.; Cho, Y.L.; Han, S.Y.; Jo, D.H.; Jung, D.; Moon, D.W.; Kim, E.J.; Jeon, C.S.; Kim, J.H.; et al. Fabrication and characterization of plasma-polymerized poly(ethylene glycol) film with superior biocompatibility. ACS Appl. Mater. Interfaces 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Siow, K.S.; Kumar, S.; Griesser, H.J. Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings—A review. Plasma Process. Polym. 2015, 12, 8–24. [Google Scholar] [CrossRef]
- Gordeev, I.; Šimek, M.; Prukner, V.; Artemenko, A.; Kousal, J.; Nikitin, D.; Choukourov, A.; Biederman, H. Deposition of Poly(Ethylene Oxide)-Like Plasma Polymers on Inner Surfaces of Cavities by Means of Atmospheric-Pressure SDBD-Based Jet. Plasma Process. Polym. 2016, 13. [Google Scholar] [CrossRef]
- Sardella, E.; Gristina, R.; Senesi, G.S.; D’Agostino, R.; Favia, P. Homogeneous and micro-patterned plasma-deposited PEO-like coatings for biomedical surfaces. Plasma Process. Polym. 2004, 1. [Google Scholar] [CrossRef]
- Choukourov, A.; Polonskyi, O.; Hanus, J.; Kousal, J.; Grinevich, A.; Slavinska, D.; Biederman, H. PEO-like coatings prepared by plasma-based techniques. Plasma Process. Polym. 2009, 6, S21–S24. [Google Scholar] [CrossRef]
- Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym. Chem. 2011, 2, 1442–1448. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Daw, R.; Leary, T.O.; Kelly, J.M.; Short, R.D.; Devlin, A.J.; Brook, I.M.; Scutt, A.; Kothari, S. Molecular Engineering of Surfaces by Plasma Copolymerization and Enhanced Cell Attachment and Spreading *. Plasmons Polym. 1999, 4, 113–132. [Google Scholar] [CrossRef]
- Tatoulian, M.; Arefi-Khonsari, F.; Borra, J.P. Deposition of organic coatings at atmospheric pressure from liquid precursors. Plasma Process. Polym. 2007, 4. [Google Scholar] [CrossRef]
- Pleskunov, P.; Nikitin, D.; Tafiichuk, R.; Khalakhan, I.; Kolská, Z.; Choukourov, A. Nanophase-separated poly(acrylic acid)/poly(ethylene oxide) plasma polymers for the spatially localized attachment of biomolecules. Plasma Process. Polym. 2020, 17. [Google Scholar] [CrossRef]
- Armenise, V.; Gristina, R.; Favia, P.; Cosmai, S.; Fracassi, F.; Sardella, E. Plasma-assisted deposition ofmagnesium-containing coatings on porous scaffolds for bone tissue engineering. Coatings 2020, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Da Ponte, G.; Sardella, E.; Fanelli, F.; Paulussen, S.; Favia, P. Atmospheric pressure plasma deposition of poly lactic acid-like coatings with embedded elastin. Plasma Process. Polym. 2014, 11. [Google Scholar] [CrossRef]
- Fanelli, F.; Lovascio, S.; D’Agostino, R.; Arefi-Khonsari, F.; Fracassi, F. Ar/HMDSO/O2 fed atmospheric pressure DBDs: Thin film deposition and GC-MS investigation of by-products. Plasma Process. Polym. 2010, 7. [Google Scholar] [CrossRef]
- Kogelschatz, U. Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Da Ponte, G.; Sardella, E.; Fanelli, F.; D’Agostino, R.; Gristina, R.; Favia, P. Plasma deposition of PEO-like coatings with aerosol-assisted dielectric barrier discharges. Plasma Process. Polym. 2012, 9. [Google Scholar] [CrossRef]
- Brétagnol, F.; Lejeune, M.; Papadopoulou-Bouraoui, A.; Hasiwa, M.; Rauscher, H.; Ceccone, G.; Colpo, P.; Rossi, F. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater. 2006, 2. [Google Scholar] [CrossRef]
- Sardella, E.; Gristina, R.; Ceccone, G.; Gilliland, D.; Papadopoulou-Bouraoui, A.; Rossi, F.; Senesi, G.S.; Detomaso, L.; Favia, P.; d’Agostino, R. Control of cell adhesion and spreading by spatial microarranged PEO-like and pdAA domains. Surf. Coatings Technol. 2005, 200. [Google Scholar] [CrossRef]
- Hegemann, D.; Lorusso, E.; Butron-Garcia, M.I.; Blanchard, N.E.; Rupper, P.; Favia, P.; Heuberger, M.; Vandenbossche, M. Suppression of Hydrophobic Recovery by Plasma Polymer Films with Vertical Chemical Gradients. Langmuir 2016, 32, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Drabik, M.; Kousal, J.; Celma, C.; Rupper, P.; Biederman, H.; Hegemann, D. Influence of deposition conditions on structure and aging of C:H:O plasma polymer films prepared from acetone/CO2 mixtures. Plasma Process. Polym. 2014, 11, 496–508. [Google Scholar] [CrossRef]
- Alexander, M.R.; Duc, T.M. The chemistry of deposits formed from acrylic acid plasmas. J. Mater. Chem. 1998, 8. [Google Scholar] [CrossRef]
- Demaude, A.; Poleunis, C.; Goormaghtigh, E.; Viville, P.; Lazzaroni, R.; Delcorte, A.; Gordon, M.; Reniers, F. Atmospheric Pressure Plasma Deposition of Hydrophilic/Phobic Patterns and Thin Film Laminates on Any Surface. Langmuir 2019, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treglia, A.; Palumbo, F.; Gristina, R.; Calvano, C.D.; Cataldi, T.; Fracassi, F.; Favia, P. Novel aerosol assisted plasma deposition of PEG containing coatings for non-fouling application. Appl. Surf. Sci. 2020, 527. [Google Scholar] [CrossRef]
- Palumbo, F.; Porto, C.L.; Fracassi, F.; Favia, P. Recent advancements in the use of aerosol-assisted atmospheric pressure plasma deposition. Coatings 2020, 10, 440. [Google Scholar] [CrossRef]
- Stallard, C.P.; Solar, P.; Biederman, H.; Dowling, D.P. Deposition of Non-Fouling PEO-Like Coatings Using a Low Temperature Atmospheric Pressure Plasma Jet. Plasma Process. Polym. 2016, 13. [Google Scholar] [CrossRef]
- Plotnikov, S.V.; Pasapera, A.M.; Sabass, B.; Waterman, C.M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2012, 151. [Google Scholar] [CrossRef] [Green Version]
- Assegie, A.A.; Cheng, J.H.; Kuo, L.M.; Su, W.N.; Hwang, B.J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10. [Google Scholar] [CrossRef]
- Masuda, Y.; Nakanishi, T. Ion-specific swelling behavior of poly(ethylene oxide) gel and the correlation to the intrinsic viscosity of the polymer in salt solutions. Colloid Polym. Sci. 2002, 280. [Google Scholar] [CrossRef]
- Choukourov, A.; Gordeev, I.; Arzhakov, D.; Artemenko, A.; Kousal, J.; Kylián, O.; Slavínská, D.; Biederman, H. Does cross-link density of PEO-like plasma polymers influence their resistance to adsorption of fibrinogen? Plasma Process. Polym. 2012, 9. [Google Scholar] [CrossRef]
- Lundberg, R.D.; Bailey, F.E.; Callard, R.W. Interactions of inorganic salts with poly(ethylene oxide). J. Polym. Sci. Part A-1 Polym. Chem. 1966, 4. [Google Scholar] [CrossRef]
Deposition Step | Name | ϕC2H4 (sccm) | ϕHe-TEGDME (slm) | ϕHe-Carrier (slm) | Va (kVp−p) | f (kHz) | td (s) |
---|---|---|---|---|---|---|---|
Step 1 | - | 8 | - | 8 | 8.5 | 16; 26 2 | 60 |
Step 2 | - | 8 | 3.15 | 4.85 | 8.5 | 16; 26 2 | 10 |
Step 3 | PEOA * | - | 3.15 | 4.85 | 6.5; 8.5 1 | 16; 26 2 | 300 |
PEOB * | - | 3.15 | 6.85 | 6.5; 8.5 1 | 26 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardella, E.; Gristina, R.; Fanelli, F.; Veronico, V.; Da Ponte, G.; Kroth, J.; Fracassi, F.; Favia, P. How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas. Appl. Sci. 2020, 10, 9101. https://doi.org/10.3390/app10249101
Sardella E, Gristina R, Fanelli F, Veronico V, Da Ponte G, Kroth J, Fracassi F, Favia P. How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas. Applied Sciences. 2020; 10(24):9101. https://doi.org/10.3390/app10249101
Chicago/Turabian StyleSardella, Eloisa, Roberto Gristina, Fiorenza Fanelli, Valeria Veronico, Gabriella Da Ponte, Jennifer Kroth, Francesco Fracassi, and Pietro Favia. 2020. "How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas" Applied Sciences 10, no. 24: 9101. https://doi.org/10.3390/app10249101
APA StyleSardella, E., Gristina, R., Fanelli, F., Veronico, V., Da Ponte, G., Kroth, J., Fracassi, F., & Favia, P. (2020). How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas. Applied Sciences, 10(24), 9101. https://doi.org/10.3390/app10249101