Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Method 1
2.2. Method 2
2.3. Materials
3. Results and Discussion
3.1. Results and Discussion 1
3.2. Results and Discussion 2
3.3. Thermal Relaxation Spectrum
4. Relation Between Photothermal and Photoluminescence Excitation Spectra
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ishida, H.; Tobita, S.; Hasegawa, Y.; Katoh, R.; Nozaki, K. Recent advances in instrumentation for absolute emission quantum yield measurements. Coord. Chem. Rev. 2010, 254, 2449–2458. [Google Scholar] [CrossRef]
- Lahmann, W.; Ludewig, H.J. Opto—Acoustic determination of absolute quantum yields in flourescent solutions. Chem. Phys. Lett. 1977, 45, 177–179. [Google Scholar] [CrossRef]
- Sugitani, Y.; Kato, K. Simultaneous Measurement of Photoacoustic and Excitation Spectra for the Evaluation of Quantum Efficiencies of Uranium-mica Type Compounds. BCSJ 1979, 52, 3499–3502. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Sugitani, Y. Cell Design for Simultaneous Measurement of Photoacoustic and Fluorescence Spectra. BCSJ 1979, 52, 3733–3734. [Google Scholar] [CrossRef] [Green Version]
- Cahen, D.; Malkin, S.; Lerner, E.I. Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis. FEBS Lett. 1978, 91, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Poulet, P.; Cahen, D.; Malkin, S. Photoacoustic detection of photosynthetic oxygen evolution from leaves. Quantitative analysis by phase and amplitude measurements. Biochim. Biophys. Acta-Bioenerg. 1983, 724, 433–446. [Google Scholar] [CrossRef]
- Terazima, M.; Kanno, H.; Azumi, T. Measurement of the quantum yield of triplet formation (φISC) in a polymer matrix by the time-resolved thermal lens method: Excitation wavelength dependence of φISC of N-methyl-p-nitroaniline. Chem. Phys. Lett. 1990, 173, 327–330. [Google Scholar] [CrossRef]
- Müller, P.; Li, X.-P.; Niyogi, K.K. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Kitamori, T.; Sawada, T. Ultramicrospectrochemical analysis and trace determination of compounds adsorbed on a single microparticulate sample by the optical beam deflection method. Anal. Chem. 1991, 63, 217–219. [Google Scholar] [CrossRef]
- Shiokawa, N.; Mizuno, Y.; Tsuchiya, H.; Tokunaga, E. Sagnac interferometer for photothermal deflection spectroscopy. Opt. Lett. 2012, 37, 2655–2657. [Google Scholar] [CrossRef]
- Shiokawa, N.; Tokunaga, E. Quasi first-order Hermite Gaussian beam for enhanced sensitivity in Sagnac interferometer photothermal deflection spectroscopy. Opt. Express 2016, 24, 11961–11974. [Google Scholar] [CrossRef] [PubMed]
- Boccara, A.C.; Fournier, D.; Badoz, J. Thermo-optical spectroscopy: Detection by the “mirage effect”. Appl. Phys. Lett. 1980, 36, 130–132. [Google Scholar] [CrossRef]
- Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence Properties of a Red Phosphor, CaAlSiN3: Eu2 +, for White Light-Emitting Diodes. Electrochem. Solid-State Lett. 2006, 9, H22–H25. [Google Scholar] [CrossRef]
- Xie, R.-J.; Hirosaki, N.; Takeda, T. Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diodes. Appl. Phys. Express 2009, 2, 022401. [Google Scholar] [CrossRef]
- Ohkubo, K.; Nakagawa, Y. Quantum Efficiency Measurement of Lamp Phosphors in Accordance with Radiometric Standards. J. Light Vis. Environ. 2013, 37, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.; Imbusch, G.F. Optical Spectroscopy of Inorganic Solids; Clarendon/Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-929862-4. [Google Scholar]
- Wang, J.; Zhang, H.; Lei, B.; Xia, Z.; Dong, H.; Liu, Y.; Zheng, M.; Xiao, Y. Enhanced photoluminescence and phosphorescence properties of red CaAlSiN 3:Eu 2+ phosphor via simultaneous UV-NIR stimulation. J. Mater. Chem. C 2015, 3, 4445–4451. [Google Scholar] [CrossRef]
- Ueda, J.; Tanabe, S.; Takahashi, K.; Takeda, T.; Hirosaki, N. Thermal Quenching Mechanism of CaAlSiN3:Eu2+ Red Phosphor. BCSJ 2017, 91, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Im, J.; Keuk Bang, B.; Hae Kim, C.; Chang, H.; Kong, K. First-principles calculation of metal-doped CaAlSiN 3: Material design for new phosphors. RSC Adv. 2015, 5, 39319–39323. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, B.; Dong, F.; Wang, S.; Su, W.-S. A first-principles study of the electronic structure and mechanical and optical properties of CaAlSiN 3. Phys. Chem. Chem. Phys. 2015, 17, 15065–15070. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Q.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Hirosaki, N.; Nishimura, T.; Sekiguchi, T.; Huang, Z.; et al. CaAlSiN 3:Eu 2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting. J. Mater. Chem. C 2016, 4, 8197–8205. [Google Scholar] [CrossRef]
- Yoon, H.C.; Yoshihiro, K.; Yoo, H.; Lee, S.W.; Oh, J.H.; Do, Y.R. Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thermal diffusivity. Wikipedia, 2019. Available online: https://en.wikipedia.org/wiki/Thermal_diffusivity (accessed on 26 December 2019).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chima, H.; Shiokawa, N.; Seto, K.; Takahashi, K.; Hirosaki, N.; Kobayashi, T.; Tokunaga, E. Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy. Appl. Sci. 2020, 10, 1008. https://doi.org/10.3390/app10031008
Chima H, Shiokawa N, Seto K, Takahashi K, Hirosaki N, Kobayashi T, Tokunaga E. Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy. Applied Sciences. 2020; 10(3):1008. https://doi.org/10.3390/app10031008
Chicago/Turabian StyleChima, Hiromichi, Naoyuki Shiokawa, Keisuke Seto, Kohsei Takahashi, Naoto Hirosaki, Takayoshi Kobayashi, and Eiji Tokunaga. 2020. "Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy" Applied Sciences 10, no. 3: 1008. https://doi.org/10.3390/app10031008
APA StyleChima, H., Shiokawa, N., Seto, K., Takahashi, K., Hirosaki, N., Kobayashi, T., & Tokunaga, E. (2020). Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN:Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy. Applied Sciences, 10(3), 1008. https://doi.org/10.3390/app10031008