Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications
Abstract
:1. Introduction
2. Synthesis
2.1. Sol–gel Method
2.2. Hydrothermal/Solvothermal Method
2.3. Ultrasound Method
2.4. Calcination
2.5. In-Situ Method
3. Characterization
3.1. Morphology and Surface Area
3.2. Structure and Chemical Composition
3.3. Optical Property and Stability
4. Mechanism
4.1. Adsorption
4.2. Narrowing the Band Gap
4.3. Facilitating the Electron Transport
4.4. Suppression of Electron-hole Recombination
4.5. Others
5. Applications of BC-based Photocatalysts
5.1. TiO2-BCPs
5.2. g-C3N4-BCPs
5.3. Bismuth-BCPs
5.4. Carbon Quantum Dots (CQDs)-BCPs
6. Summary and Outlook
- Most research on the photocatalytic treatment of wastewater through BCPs focused on individual organic or inorganic substance. However, the real wastewater often contains multicomponent of pollutants. There might be competitive adsorption or photocatalysis between different materials during the removal process. Therefore, the performance of BCPs in treating real wastewater needs to be studied further.
- Recycling significantly reduces the cost of photocatalysis. The reuse of the BCPs from the slurry systems remains a problem, which limits the widespread of their applications. One promising approach to solve this problem is the magnetic separation by applying an external magnetic field in the water treatment process. More research is required to establish the efficient BCPs recovery at large scale.
- Despite its advantages, certain hazardous waste biomass such as sewage sludge and municipal waste could release toxic organic or inorganic substances during the pyrolysis process, thus inducing ecological and health risks. Further research on the assessment of the long-term effects and security of the applications in wastewater treatment needs to be considered.
- By now, most of the research has been carried out in the static system, which is usually applied to test the photocatalytic performance of new catalysts. However, photocatalysis in dynamic conditions may exhibit different abilities. Further investigations are required for the development of BCPs in dynamic photocatalysis system.
Author Contributions
Funding
Conflicts of Interest
References
- Mian, M.M.; Liu, G. Recent progress in biochar-supported photocatalysts: Synthesis, role of biochar, and applications. RSC Adv. 2018, 8, 14237–14248. [Google Scholar] [CrossRef] [Green Version]
- Shaban, Y.A.; El Maradny, A.A.; Al Farawati, R.K. Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2016, 328, 114–121. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 2009, 114, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Z.; Chen, J.; Cheng, L.; Chang, J.; Sheng, W.; Hu, C.; Cao, S. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 715–722. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140, 559–587. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. Review on modified N–TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms. RSC Adv. 2014, 4, 28265–28299. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification. Mater. Chem. Phys. 2014, 143, 1300–1308. [Google Scholar] [CrossRef]
- Eslami, A.; Amini, M.M.; Yazdanbakhsh, A.R.; Mohseni-Bandpei, A.; Safari, A.A.; Asadi, A. N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: A comparative study. J. Chem. Technol. Biotechnol. 2016, 91, 2693–2704. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Appl. Surf. Sci. 2015, 344, 112–118. [Google Scholar] [CrossRef]
- Giannakas, A.; Antonopoulou, M.; Daikopoulos, C.; Deligiannakis, Y.; Konstantinou, I. Characterization and catalytic performance of B-doped, B–N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr (VI) reduction and benzoic acid oxidation. Appl. Catal. B Environ. 2016, 184, 44–54. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E.; Bhargava, S.K. Effective role of trifluoroacetic acid (TFA) to enhance the photocatalytic activity of F-doped TiO2 prepared by modified sol–gel method. Appl. Surf. Sci. 2016, 365, 57–68. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Centi, G. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci. 2016, 370, 380–393. [Google Scholar] [CrossRef]
- Mendiola-Alvarez, S.; Hernández-Ramírez, A.; Guzmán-Mar, J.; Maya-Treviño, M.; Caballero-Quintero, A.; Hinojosa-Reyes, L. A novel P-doped Fe2O3-TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. Catal. Today 2019, 328, 91–98. [Google Scholar] [CrossRef]
- Lai, Y.-K.; Huang, J.-Y.; Zhang, H.-F.; Subramaniam, V.-P.; Tang, Y.-X.; Gong, D.-G.; Sundar, L.; Sun, L.; Chen, Z.; Lin, C.-J. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J. Hazard. Mater. 2010, 184, 855–863. [Google Scholar] [CrossRef]
- Jyothi, M.; Nayak, V.; Reddy, K.R.; Naveen, S.; Raghu, A. Non-metal (Oxygen, Sulphur, Nitrogen, Boron and Phosphorus)-Doped Metal Oxide Hybrid Nanostructures as Highly Efficient Photocatalysts for Water Treatment and Hydrogen Generation. In Nanophotocatalysis and Environmental Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 83–105. [Google Scholar]
- Khan, S.U.M.; Al-Shahry, M.; Ingler, W.B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef]
- Sakthivel, S.; Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908–4911. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity. Ind. Eng. Chem. Res. 2007, 46, 2741–2746. [Google Scholar] [CrossRef]
- Wang, H.; Lewis, J.P. Effects of dopant states on photoactivity in carbon-doped TiO2. J. Phys. Condens. Matter 2005, 17, L209. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Varma, R.S.; Lisowski, P. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chem. 2016, 18, 5736–5750. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Lin, H.; Li, B.; Dong, Y.; He, Y.; Wang, L. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour. Technol. 2018, 259, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, X.; Da Silva, E.B.; De Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-J.; Cheng, Y.-L.; Wong, R.-J.; Wang, X.-D. Adsorption removal of natural organic matters in waters using biochar. Bioresour. Technol. 2018, 260, 413–416. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Gao, J.; Dionysiou, D.D.; Zhou, D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 2015, 49, 5645–5653. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere 2018, 206, 777–783. [Google Scholar] [CrossRef]
- Silvestri, S.; Gonçalves, M.G.; Da Silva Veiga, P.A.; Matos, T.T.D.S.; Peralta-Zamora, P.; Mangrich, A.S. TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye. J. Environ. Chem. Eng. 2019, 7, 102879. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef]
- Cai, X.; Li, J.; Liu, Y.; Yan, Z.; Tan, X.; Liu, S.; Zeng, G.; Gu, Y.; Hu, X.; Jiang, L. Titanium dioxide-coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants. J. Chem. Technol. Biotechnol. 2018, 93, 783–791. [Google Scholar] [CrossRef]
- Kim, J.R.; Kan, E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J. Environ. Manag. 2016, 180, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Khataee, A.; Kayan, B.; Gholami, P.; Kalderis, D.; Akay, S. Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite. Ultrason. Sonochem. 2017, 39, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, B.; Ji, X.-X.; Ma, M.-G. Synthesis, characterization, and photocatalytic properties of bamboo charcoal/TiO2 composites using four sizes powder. Materials 2018, 11, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Men, Q.; Wang, T.; Ma, C.; Yang, L.; Liu, Y.; Huo, P.; Yan, Y. In-suit preparation of CdSe quantum dots/porous channel biochar for improving photocatalytic activity for degradation of tetracycline. J. Taiwan Inst. Chem. Eng. 2019, 99, 180–192. [Google Scholar] [CrossRef]
- Vinayagam, M.; Ramachandran, S.; Ramya, V.; Sivasamy, A. Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite. J. Environ. Chem. Eng. 2018, 6, 3726–3734. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Naushad, M.; Stadler, F.J.; Ghfar, A.A.; Dhiman, P.; Saini, R.V. Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation. J. Clean. Prod. 2017, 165, 431–451. [Google Scholar]
- Gao, N.; Lu, Z.; Zhao, X.; Zhu, Z.; Wang, Y.; Wang, D.; Hua, Z.; Li, C.; Huo, P.; Song, M. Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass. Chem. Eng. J. 2016, 304, 351–361. [Google Scholar] [CrossRef]
- Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Djellabi, R.; Yang, B.; Wang, Y.; Cui, X.; Zhao, X. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr (VI) under narrow visible light. Chem. Eng. J. 2019, 366, 172–180. [Google Scholar] [CrossRef]
- Lisowski, P.; Colmenares, J.C.; Mašek, O.; Lisowski, W.; Lisovytskiy, D.; Kamińska, A.; Łomot, D. Dual Functionality of TiO2/Biochar Hybrid Materials: Photocatalytic Phenol Degradation in the Liquid Phase and Selective Oxidation of Methanol in the Gas Phase. ACS Sustain. Chem. Eng. 2017, 5, 6274–6287. [Google Scholar] [CrossRef] [Green Version]
- Matos, J. Eco-friendly heterogeneous photocatalysis on biochar-based materials under solar irradiation. Top. Catal. 2016, 59, 394–402. [Google Scholar] [CrossRef]
- Xue, H.; Chen, Y.; Liu, X.; Qian, Q.; Luo, Y.; Cui, M.; Chen, Y.; Yang, D.-P.; Chen, Q. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO2 hybrids. Mater. Sci. Eng. C 2018, 82, 197–203. [Google Scholar] [CrossRef]
- Xie, X.; Li, S.; Zhang, H.; Wang, Z.; Huang, H. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation. Sci. Total Environ. 2019, 659, 529–539. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.A.H.; Naushad, M.; Ghfar, A.A.; Guo, C.; Stadler, F.J. Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chem. Eng. J. 2018, 339, 393–410. [Google Scholar] [CrossRef]
- Donar, Y.O.; Bilge, S.; Sınağ, A.; Pliekhov, O. TiO2/Carbon Materials Derived from Hydrothermal Carbonization of Waste Biomass: A Highly Efficient, Low-Cost Visible-Light-Driven Photocatalyst. ChemCatChem 2018, 10, 1134–1139. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Bedia, J.; Rodriguez, J.J.; Belver, C. Effect of Activating Agent on the Properties of TiO2/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. Materials 2019, 12, 378. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Liu, S.; Mao, W.; Bai, Y.; Chiang, K.; Shah, K.; Paz-Ferreiro, J. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr (VI). J. Hazard. Mater. 2019. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. J. Hazard. Mater. 2020, 382, 121070. [Google Scholar] [CrossRef]
- Ye, S.; Yan, M.; Tan, X.; Liang, J.; Zeng, G.; Wu, H.; Song, B.; Zhou, C.; Yang, Y.; Wang, H. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B Environ. 2019, 250, 78–88. [Google Scholar] [CrossRef]
- Li, M.; Huang, H.; Yu, S.; Tian, N.; Dong, F.; Du, X.; Zhang, Y. Simultaneously promoting charge separation and photoabsorption of BiOX (X= Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 2016, 386, 285–295. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zheng, Y.F.; Song, X.C. Biomass Assisted Synthesis of 3D Hierarchical Structure BiOX (X Cl, Br)-(CMC) with Enhanced Photocatalytic Activity. J. Nanosci. Nanotechnol. 2019, 19, 5287–5294. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.-Y.; Zhang, Y.-Q.; Wang, J.-T.; Zhou, J.-R.; Cao, H.-L.; Lü, J. Mixed phase nano–CdS supported on activated biomass carbon as efficient visible light–driven photocatalysts. Environ. Sci. Pollut. Res. 2019, 26, 31055–31061. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, P.; Colmenares, J.C.; Mašek, O.; Lisowski, W.; Lisovytskiy, D.; Grzonka, J.; Kurzydłowski, K. Design and Fabrication of TiO2/Lignocellulosic Carbon Materials: Relevance of Low-temperature Sonocrystallization to Photocatalysts Performance. ChemCatChem 2018, 10, 3469–3480. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Wang, M.; Hu, F.; Qiu, F.; Dai, H.; Cao, Z. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. J. Alloys Compd. 2019, 770, 1055–1063. [Google Scholar] [CrossRef]
- Huang, H.-B.; Wang, Y.; Jiao, W.-B.; Cai, F.-Y.; Shen, M.; Zhou, S.-G.; Cao, H.-L.; Lü, J.; Cao, R. Lotus-Leaf-Derived Activated-Carbon-Supported Nano-CdS as Energy-Efficient Photocatalysts under Visible Irradiation. ACS Sustain. Chem. Eng. 2018, 6, 7871–7879. [Google Scholar] [CrossRef]
- Li, K.; Huang, Z.; Zhu, S.; Luo, S.; Yan, L.; Dai, Y.; Guo, Y.; Yang, Y. Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl. Catal. B Environ. 2019, 243, 386–396. [Google Scholar] [CrossRef]
- Cruz, G.J.F.; Gómez, M.M.; Solis, J.L.; Rimaycuna, J.; Solis, R.L.; Cruz, J.F.; Rathnayake, B.; Keiski, R.L. Composites of ZnO nanoparticles and biomass based activated carbon: adsorption, photocatalytic and antibacterial capacities. Water Sci. Technol. 2018, 2017, 492–508. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Dai, Y.; Guo, J.; Zhou, L.; Chen, M.; Yang, H.; Peng, L. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J. Colloid Interface Sci. 2020, 560, 111–121. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Kumar, A.; Kalia, S.; Guo, C.; Mola, G.T. Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J. Photochem. Photobiol. A Chem. 2017, 337, 118–131. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A.A.H.; Kumar, A.; Hira, I.; Ahamad, T.; Ghfar, A.A.; Stadler, F.J. Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar. J. Environ. Manag. 2019, 231, 1164–1175. [Google Scholar] [CrossRef]
- Lisowski, P.; Colmenares, J.C.; Mašek, O.; Łomot, D.; Chernyayeva, O.; Lisovytskiy, D. Novel biomass-derived hybrid TiO2/carbon material using tar-derived secondary char to improve TiO2 bonding to carbon matrix. J. Anal. Appl. Pyrolysis 2018, 131, 35–41. [Google Scholar] [CrossRef]
- Fazal, T.; Razzaq, A.; Javed, F.; Hafeez, A.; Rashid, N.; Amjad, U.S.; Rehman, M.S.U.; Faisal, A.; Rehman, F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J. Hazard. Mater. 2019. [Google Scholar] [CrossRef]
- Zhu, N.; Li, C.; Bu, L.; Tang, C.; Wang, S.; Duan, P.; Yao, L.; Tang, J.; Dionysiou, D.D.; Wu, Y. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance. J. Hazard. Mater. 2020, 384, 121258. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere 2019, 219, 804–825. [Google Scholar] [CrossRef]
- Lisowski, P.; Colmenares, J.C.; Łomot, D.; Chernyayeva, O.; Lisovytskiy, D. Preparation by sonophotodeposition method of bimetallic photocatalysts Pd–Cu/TiO2 for sustainable gaseous selective oxidation of methanol to methyl formate. J. Mol. Catal. A Chem. 2016, 411, 247–256. [Google Scholar] [CrossRef]
- Brandes, R.; Trindade, E.C.A.; Vanin, D.F.; Vargas, V.M.M.; Carminatti, C.A.; Al-Qureshi, H.A.; Recouvreux, D.O.S. Spherical Bacterial Cellulose/TiO2 Nanocomposite with Potential Application in Contaminants Removal from Wastewater by Photocatalysis. Fibers Polym. 2018, 19, 1861–1868. [Google Scholar] [CrossRef]
- Zhao, B.; O’connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Abdul, G.; Zhu, X.; Chen, B. Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem. Eng. J. 2017, 319, 9–20. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B. A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ. Sci. Technol. 2017, 51, 5473–5482. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Zhang, Y.; Zou, W.; Luo, Y.; Dong, L.; Gao, B. Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar 2019, 1, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Geng, A.; Meng, L.; Han, J.; Zhong, Q.; Li, M.; Han, S.; Mei, C.; Xu, L.; Tan, L.; Gan, L. Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose 2018, 25, 4133–4144. [Google Scholar] [CrossRef]
- Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B Environ. 2007, 69, 138–144. [Google Scholar] [CrossRef]
- Al-Kahtani, A.A.; Alshehri, S.M.; Naushad, M.; Ruksana; Ahamad, T. Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol. Int. J. Biol. Macromol. 2019, 121, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.C.; Webber, J.B.W.; Ogbonnaya, U.O. Characteristics of biochar porosity by NMR and study of ammonium ion adsorption. J. Anal. Appl. Pyrolysis 2019, 143, 104687. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, Q.; Zhang, P.; Wang, J.; Wang, R.; Zeng, Z.; Deng, S. Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties. Fuel 2019, 240, 270–277. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, C.; Guo, H.; Guo, M.; Li, W. Speciation Transformation of Phosphorus in Poultry Litter during Pyrolysis: Insights from XRD, FTIR, and Solid-state NMR Spectroscopy. Environ. Sci. Technol. 2019, 53, 13841–13849. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Yao, X.; Ma, C.; Huang, H.; Zhu, Z.; Dong, H.; Li, C.; Zhang, W.; Yan, Y.; Liu, Y. Solvothermal-Assisted Synthesis of Biomass Carbon Quantum Dots/Bismuth Oxyiodide Microflower for Enhanced Photocatalytic Activity. Nano 2018, 13, 1850031. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Chen, S.S.; Tsang, D.C.W.; Cao, L.; Song, H.; Kwon, E.E.; Ok, Y.S.; Zhang, S.; Poon, C.S. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal. Today 2018, 314, 52–61. [Google Scholar] [CrossRef]
- Zou, W.; Gao, B.; Ok, Y.S.; Dong, L. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere 2019, 218, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Di Valentin, C.; Pacchioni, G.; Selloni, A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005, 17, 6656–6665. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Yuan, Q. Ti3+-doped TiO2 hollow sphere with mixed phases of anatase and rutile prepared by dual-frequency atmospheric pressure plasma jet. J. Nanopart. Res. 2018, 20, 208. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Hamid, S.B.A. Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram. Int. 2017, 43, 625–633. [Google Scholar] [CrossRef]
- Lu, Z.; Zeng, L.; Song, W.; Qin, Z.; Zeng, D.; Xie, C. In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B Environ. 2017, 202, 489–499. [Google Scholar] [CrossRef]
- Khalid, N.; Majid, A.; Tahir, M.B.; Niaz, N.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Hideyuki, K.; Takahisa, A.; Koichi, Y. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J. Chem. Phys. 2005, 123, 37. [Google Scholar]
- Djellabi, R.; Yang, B.; Xiao, K.; Gong, Y.; Cao, D.; Sharif, H.M.A.; Zhao, X.; Zhu, C.; Zhang, J. Unravelling the mechanistic role of TiOC bonding bridge at titania/lignocellulosic biomass interface for Cr (VI) photoreduction under visible light. J. Colloid Interface Sci. 2019, 553, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Li, Y.; Wei, Z.; Yin, G.; Niu, J. Adsorption of dyes on hierarchical mesoporous Tio2 fibers and its enhanced photocatalytic properties. J. Phys. Chem. C 2011, 115, 5708–5719. [Google Scholar] [CrossRef]
- Zhu, Z.; Fan, W.; Liu, Z.; Yu, Y.; Dong, H.; Huo, P.; Yan, Y. Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity. J. Photochem. Photobiol. A Chem. 2018, 358, 284–293. [Google Scholar] [CrossRef]
- Meng, L.; Yin, W.; Wang, S.; Wu, X.; Hou, J.; Yin, W.; Feng, K.; Ok, Y.S.; Wang, X. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity. Chemosphere 2020, 239, 124713. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lu, Z.; Ji, R.; Zhang, M.; Yi, C.; Yan, Y. Biomass carbon modified Z-scheme g-C3N4/Co3O4 heterojunction with enhanced visible-light photocatalytic activity. Catal. Commun. 2018, 112, 49–52. [Google Scholar] [CrossRef]
- Shi, M.; Wei, W.; Jiang, Z.; Han, H.; Gao, J.; Xie, J. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv. 2016, 6, 25255–25266. [Google Scholar] [CrossRef]
- Fang, G.; Zhu, C.; Dionysiou, D.D.; Gao, J.; Zhou, D. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 2015, 176, 210–217. [Google Scholar] [CrossRef]
- Tan, X.-F.; Liu, Y.-G.; Gu, Y.-L.; Xu, Y.; Zeng, G.-M.; Hu, X.-J.; Liu, S.-B.; Wang, X.; Liu, S.-M.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Wang, Y.; Dionysiou, D.D.; Zhou, D. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Appl. Catal. B Environ. 2017, 214, 34–45. [Google Scholar] [CrossRef]
- Wan, J.; Sun, L.; Fan, J.; Liu, E.; Hu, X.; Tang, C.; Yin, Y. Facile synthesis of porous Ag3PO4 nanotubes for enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 2015, 355, 615–622. [Google Scholar] [CrossRef]
- Jin, J.; Sun, K.; Wang, Z.; Yang, Y.; Han, L.; Xing, B. Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions. Environ. Sci. Technol. 2017, 51, 2635–2642. [Google Scholar] [CrossRef]
- Shi, S.; Liu, J.; Xu, J.; Zeng, Q.; Hou, Y.; Jiang, B. Effects of biochar on the phenol treatment performance and microbial communities shift in sequencing batch reactors. Water Res. 2019, 161, 1–10. [Google Scholar] [CrossRef]
- Dutta, T.; Kwon, E.; Bhattacharya, S.S.; Jeon, B.H.; Deep, A.; Uchimiya, M.; Kim, K.-H. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. Gcb Bioenergy 2017, 9, 990–1004. [Google Scholar] [CrossRef]
- Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Ala’a, H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Z.; Huang, S.; Huang, X.; Xu, B.; Hu, L.; Cui, H.; Ruan, S.; Zeng, Y.-J. Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 246, 61–71. [Google Scholar] [CrossRef]
- Li, C.; Zhao, G.; Yan, T.; Zhang, T.; Liu, X.; Long, X.; Duan, H.; Jiao, F. Enhanced visible-light-induced photocatalytic performance of Bi2O3/ZnAl-LDH–C for dyes removal in water. Mater. Lett. 2019, 244, 215–218. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Xie, X.; Liang, G.; Cai, X.; Zhang, X.; Wang, Z. Fabrication of vessel–like biochar–based heterojunction photocatalyst Bi2S3/BiOBr/BC for diclofenac removal under visible LED light irradiation: Mechanistic investigation and intermediates analysis. J. Hazard. Mater. 2019. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Zhao, X.; Yang, X.; Liang, G.; Xie, X. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation. Chem. Eng. J. 2019, 360, 600–611. [Google Scholar] [CrossRef]
- Briscoe, J.; Marinovic, A.; Sevilla, M.; Dunn, S.; Titirici, M. Biomass-Derived Carbon Quantum Dot Sensitizers for Solid-State Nanostructured Solar Cells. Angew. Chem. Int. Ed. 2015, 54, 4463–4468. [Google Scholar] [CrossRef]
- Hassan, M.; Gomes, V.G.; Dehghani, A.; Ardekani, S.M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Du, Y.; Jiang, H.; Zhou, D.; Dong, S. Carbon nanodots/WO3 nanorods Z-scheme composites: Remarkably enhanced photocatalytic performance under broad spectrum. Appl. Catal. B Environ. 2017, 209, 253–264. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.; Men, Q.; Ma, C.; Liu, Y.; Ma, W.; Liu, Z.; Wei, M.; Li, C.; Yan, Y. Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets. Chin. J. Catal. 2019, 40, 886–894. [Google Scholar] [CrossRef]
BCPs | Biomass | Pollutants | Synthesis Route | Working Conditions | Performance | Refs. |
---|---|---|---|---|---|---|
BC-TiO2 | Coconut shell | Reactive Brilliant Blue KN-R | Sol–gel | [KN-R] = 30 mg·L−1, [BCPs] = 6 g·L−1 Ultraviolet (UV) light | 99.71% (pH = 1, 60 min) 96.99% (pH = 11, 60 min) | [28] |
BC-TiO2 | Salvinia molesta (SM) | Acid Orange 7 (AO7) | Sol–gel Mechanical mixing | [AO7] = 20 mg·L−1, [BCPs] = 0.25 g·L−1 UV light | 57.6% (180 min) | [29] |
BC-TiO2 | Reed straw (RS) | Sulfamethoxazole (SMX) | Sol–gel | [SMX] = 10 mg·L−1, [BCPs] = 1.25 g·L−1 UV light | 91.27% (180 min) | [30] |
BC-TiO2 | Ramie char | Safranine T (ST) | Modified sol–gel | [ST] = 500 mg·L−1 [BCPs] = 2 g·L−1 UV light | 226.7 mg·g−1 (120 min) | [31] |
BC-TiO2 | Corn cob (CC) | SMX | Sol–gel | [SMX] = 10 mg·L−1, [BCPs] = 5 g·L−1 UV light | 91% (removal efficiency, 360 min) 81% (mineralization, 360 min) | [32] |
BC-TiO2 | Sugarcane bagasse | Methyl orange (MO) | Sol–gel | [MO] = 3×10−5 mol/L [BCPs] = 1 g·L−1 Visible light | 95.0% (300 min) | [43] |
BC-Zn/TiO2 | Reed straw | SMX | Modified sol–gel | [SMX] = 10 mg·L−1 [BCPs] = 1.25 g·L−1 Visible light | 81.21% (180 min) | [44] |
BC-ZnO | Waste biomass | Orange G dye (OG) | Hydrothermal | [OG] = 50 mg·L−1 [BCPs] = 1 g·L−1 UV and Visible light | 88.4% (Visible light) 94.1% (UV light) | [36] |
BC-TiO2 | Walnut shells | MO | Hydrothermal | [MO] = 20 mg·L−1, [BCPs] = 0.25 g·L−1 UV light | 92.45% (decolorization, 150 min) 76.56% (mineralization, 150 min) | [39] |
BC-Bi2O2CO3/g-C3N4/CoFe2O4 | Prunus dulcis | Paraquat (PQT) | Hydrothermal | [PQT] = 20 ppm [BCPs] = 0.5 g·L−1 Visible light and sunlight | 99.3% (Visible light, 90 min) 92.1% (Solar light, 120 min) | [45] |
BC-TiO2 | Hazelnut shell (HS) and olive residue (OR)) | Methylene blue (MB) | Hydrothermal Sol–gel | [MB] = 10 ppm, [BCPs] = 1g·L−1 Visible light | 96.97% (HS-TiO2, 420 min) 82.52% (OR-TiO2, 420 min) | [46] |
BC-TiO2 | Lignin | Acetaminophen (ACE) | Solvothermal | [ACE] = 5 mg·L−1 [BCPs] = 0.25 g·L−1 Solar radiation | 92% (360 min) | [47] |
N-BC-Bi2WO6 | Pine | RhB, Cr(VI) | Solvothermal | [RhB] = 10 mg·L−1 [BCPs] = 1g·L−1 Visible light | 99.1% (RhB, 45 min) 96.7% (Cr(VI), 30 min) | [48] |
C/Fe3O4/Bi2O3 | Corn cobs | Tetracycline (TC) | Solvothermal | [TC] = 20 mg·L−1 [BCPs] = 1g·L−1 Visible light | 91% (90 min) | [38] |
BC-Zn-Co-LDH | Wheat husks and paper sludge | Gemifloxacin (GMF) | Hydrothermal | [GMF] = 15–35 mg·L−1 [BCPs] = 0.15–0.75 g/L UV-B light | 92.7% (130 min) | [49] |
BC-g-MoS2 | Rice straw | TC | One-pot hydrothermal | [TC] = 20 mg·L−1 [BCPs] = 0.4 g·L−1 Visible light | 70% (240 min) | [50] |
BC-BiOX(X = Cl, Br) | Biochar | MO | One-step hydrolysis | [MO] = 0.03 mM [BCPs] = 0.6 g·L−1 Visible light | 82% (150 min) | [51] |
BC-BiOX(X = Cl, Br) | Sodium carboxymethyl cellulose | TC | One-step hydrolysis | [TC] = 20 mg·L−1 [BCPs] = 0.25 g·L−1 Visible light | 96.5% (BiOBr-BC), 60 min 60.3% (BiOCl-BC), 60 min | [52] |
BC-mp/CdS | Biomass | Rhodamine B (RhB) | Modified hydrothermal | [RhB] = 10 ppm [BCPs] = 0.05g·L−1 Visible light | K = 2.7 × 10−2 min−1 | [53] |
BC-TiO2 | Olive pits (OP) and wood shaving (WS) | Cr(VI) | Ultrasonic-assisted sol–gel | [Cr(VI)] = 10 ppm [BCPs] = 0.5 g·L−1 UV and visible light | 100% (30 min, 50 min, and 130 min under visible light for AC-TiO2, OP-TiO2 and WS-TiO2 respectively) | [40] |
BC-TiO2 | Softwood Miscanthus straw | Phenol | Ultrasound-promoted wet impregnation methodology | [Phenol] = 50 ppm [BCPs] = 1g·L−1 UV and Visible light | 64.1% (UV light, 240 min) 33.6% (Visible light, 240 min) | [41] |
BC-TiO2 | Soft Wood Pellets | Phenol | Ultrasound-assisted methodology | [Phenol] = 50 mg·L−1 [BCPs] = 1g·L−1 UV and Visible light | 42.7% (UV light, 240 min) 15.6% (Visible light, 240 min) | [54] |
BC-TiO2/CuO | Hemp stems | Ammonia | Sonicated method | [Ammonia] = 100 mg·L−1 [BCPs] = 1g·L−1 UV and Visible light | 99.7% (UV light) 60.7% (Sunlight) | [55] |
BC-Fe3O4/BiVO4 | Pinus roxburghii | Methylparaben (MeP) | Multiple method | [MeP] = 5 mg·L−1 [BCPs] = 0.1g·L−1 Solar radiation | 97.4% (120 min) | [60] |
BC-g-C3N4/polyaniline/RGO | Bio-waste | Ibuprofen(IBN) 2,4-Dichlorophenoxy acetic acid (2,4-D) | Multi-step thermal treatment method | [IBN] = 20 mg·L−1 [2,4-D] = 20 mg·L−1 [BCPs] = 0.5 g·L−1 Visible light and Natural sunlight | 99.7% (2,4-D, 90 min) 98.4% (IBN, 90 min) | [61] |
BC-TiO2 | Softwood/Lignin | Phenol | Mechanical mixing/pyrolysis | [Phenol] = 50 mg·L−1 [BCPs] = 1 g·L−1 UV light | 52.5% (TiO2-SWP700, 240 min) 35.8% (TiO2-LIGNIN, 240 min) | [62] |
BC-TiO2 | Bamboo | MB | Calcination | [MB] = 12.8 mg·L−1 [BCPs] = 0.2g·L−1 UV and Visible light | 97% (60 min) | [34] |
BC-CdS | Lotus-leaf | RhB, MO, MB | Calcination | [Dye] = 40 mg·L−1 [BCPs] = 0.1g·L−1 Visible light | 97.8% (MO, 60 min) 96.3% (MB, 150 min) | [56] |
BC-g-C3N4 | Camellia oleifera shells | Cr(VI) | Calcination | [Cr(VI)] = 10 mg·L−1 [BCPs] = 0.2 g·L−1 Visible light | 100% (240 min) | [57] |
BC-ZnO | Corn cob (CC) Red mombin seed (RMS) | MB | Calcination | [MB] = 10 mg·L−1 [BCPs] = 0.1, 0.2, 0.5 g·L−1 UV light | K1 = 0.09 min−1 (CC-ZnO, 300 min) K1 = 0.06min−1 (RMS-ZnO, 300 min) | [58] |
BC-CoFe2O4/Ag3PO4 | Pine pollen | Bisphenol A (BPA) | In situ precipitation | [BPA] = 20 mg·L−1 [BCPs] = 0.5 g·L−1 Visible light | 91.12% (Remove efficiency, 60 min) 80.23% (Mineralization, 60 min) | [59] |
BC-CdSe | Bamboo | TC | In situ method | [TC] = 20 mg·L−1 [BCPs] = 0.5 g·L−1 Visible light | 73% (80 min) | [35] |
BC-g-C3N4/FeVO4 | Pinus roxburrghii | Methyl paraben (MeP), 2-chlorophenol (2-CP) | Multi-step (thermal treatment, acid treatment, and ammonia treatment) | [MeP/2-CP] = 20 mg·L−1 [BCPs] = 0.5 g·L−1 Sunlight | TOC removal rate: 74.2% (MeP, 60 min) 73.9% (2-CP, 60 min) | [37] |
BC-TiO2 | Macroalgae | Simulated textile wastewater (TW) | Wet precipitation | [TW] = 5 mg·L−1 [BCPs] = 2 g·L−1 Visible light | 99.20% (180 min) | [63] |
BC-Bi/Bi2O3 | Rice straws (RS) | Estrone | Impregnation | [Estrone] = 2.8 mg·L−1 [BCPs] = 1 g·L−1 UV and Visible light | Kobs = 0.045 min−1 (60 min) | [64] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhang, F.; Li, H.; Cui, J.; Ren, Y.; Yu, X. Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications. Appl. Sci. 2020, 10, 1019. https://doi.org/10.3390/app10031019
Cui J, Zhang F, Li H, Cui J, Ren Y, Yu X. Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications. Applied Sciences. 2020; 10(3):1019. https://doi.org/10.3390/app10031019
Chicago/Turabian StyleCui, Jiali, Feng Zhang, Hongyan Li, Jianguo Cui, Yatao Ren, and Xiaochen Yu. 2020. "Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications" Applied Sciences 10, no. 3: 1019. https://doi.org/10.3390/app10031019
APA StyleCui, J., Zhang, F., Li, H., Cui, J., Ren, Y., & Yu, X. (2020). Recent Progress in Biochar-Based Photocatalysts for Wastewater Treatment: Synthesis, Mechanisms, and Applications. Applied Sciences, 10(3), 1019. https://doi.org/10.3390/app10031019