Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper
Abstract
:1. Introduction
2. Theory
2.1. Optigrating Simulation
2.1.1. Effective Refractive Index
2.1.2. Transmission Spectrum
3. Device Fabrication
3.1. Making of a Fiber Taper
3.2. Inscription of the Sensing Structure
4. Strain and Temperature Testing
4.1. Strain Testing
4.1.1. Peak Wavelength Response
4.1.2. Spectrum Evolution
4.2. Temperature Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hochberg, R.C. Fiber-optic sensors. IEEE Trans. Instrum. Meas. 1986, IM-35, 447–450. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005, 86, 151122. [Google Scholar] [CrossRef]
- Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction. J. Light. Technol. 1998, 16, 1606. [Google Scholar] [CrossRef]
- Hu, X.; Shen, X.; Wu, J.; Peng, J.; Yang, L.; Li, J.; Li, H.; Dai, N. All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber. Opt. Express 2016, 24, 21693–21699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Liao, C.; Wang, D.N.; Yang, M.; Lu, P. High-Temperature Sensing Using Miniaturized Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics Technol. Lett. 2010, 22, 39–41. [Google Scholar] [CrossRef]
- Yin, J.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Zou, S.; Wu, F. Assembly-Free-Based Fiber-Optic Micro-Michelson Interferometer for High Temperature Sensing. IEEE Photonics Technol. Lett. 2016, 28, 625–628. [Google Scholar] [CrossRef]
- Yuan, L.; Wei, T.; Han, Q.; Wang, H.; Huang, J.; Jiang, L.; Xiao, H. Fiber inline Michelson interferometer fabricated by a femtosecond laser. Opt. Lett. 2012, 37, 4489–4491. [Google Scholar] [CrossRef]
- Jung, J.; Nam, H.; Lee, B.; Byun, J.O.; Kim, N.S. Fiber Bragg grating temperature sensor with controllable sensitivity. Appl. Opt. 1999, 38, 2752–2754. [Google Scholar] [CrossRef]
- Zhuo, Z.C.; Ham, B.S. A temperature-insensitive strain sensor using a fiber Bragg grating. Opt. Fiber Technol. 2009, 15, 442–444. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.-W. In-line fiber optic interferometric sensors in single-mode fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, T.W.; Taylor, H.F. High-sensitivity intrinsic fiber-optic Fabry—Perot pressure sensor. Opt. Lett. 1996, 21, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.E.; Gibler, W.N.; Atkins, R.A.; Taylor, H.F. In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors. J. Light. Technol. 1992, 10, 1376–1379. [Google Scholar] [CrossRef]
- Woo-Hu, T.; Chun-Jung, L. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor. J. Light. Technol. 2001, 19, 682–686. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Tsai, H.-L.; Xiao, H. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 2008, 33, 536–538. [Google Scholar] [CrossRef]
- Rao, Y.-J.; Deng, M.; Duan, D.-W.; Yang, X.-C.; Zhu, T.; Cheng, G.-H. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 2007, 15, 14123–14128. [Google Scholar] [CrossRef]
- Rao, Y.J.; Zhu, T.; Yang, X.C.; Duan, D.W. In-line fiber-optic etalon formed by hollow-core photonic crystal fiber. Opt. Lett. 2007, 32, 2662–2664. [Google Scholar] [CrossRef]
- Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.-C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2010, 18, 141–149. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Q.; Mei, C.; Yuan, J.; Xin, X.; Mallik, A.K.; Wei, F.; Han, W.; Kumar, R.; Yu, C.; et al. Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement. J. Light. Technol. 2018, 36, 1583–1590. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef]
- Jacobsson, B.; Pasiskevicius, V.; Laurell, F. Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity. Opt. Express 2006, 14, 9284–9292. [Google Scholar] [CrossRef] [PubMed]
- Wei-Chong, D.; Xiao-Ming, T.; Hwa-Yaw, T. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 1999, 11, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Weichong, D.; Xiaoming, T.; Hwa-Yaw, T. Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 1999, 11, 596–598. [Google Scholar] [CrossRef] [Green Version]
- Yulianti, I.; Supa’at, A.S.M.; Idrus, S.M.; Anwar, M.R.S. Design of fiber Bragg grating-based Fabry–Perot sensor for simultaneous measurement of humidity and temperature. Optik 2013, 124, 3919–3923. [Google Scholar] [CrossRef]
- Uchimura, R.; Wada, A.; Tanaka, S.; Takahashi, N. Fiber Fabry-Perot Interferometric Sensor Using Bragg Gratings in Polarization Maintaining Fiber. J. Light. Technol. 2015, 33, 2499–2503. [Google Scholar] [CrossRef]
- Wada, A.; Tanaka, S.; Takahashi, N. Simultaneous measurement of strain and temperature using a Fabry–Perot interferometer consisting of Bragg gratings in polarization–maintaining fiber and current–modulated laser diodes. Jpn. J. Appl. Phys. 2017, 56, 032502. [Google Scholar] [CrossRef]
- Wang, P.; Bo, L.; Guan, C.; Semenova, Y.; Wu, Q.; Brambilla, G.; Farrell, G. Low–temperature sensitivity periodically tapered photonic crystal–fiber–based refractometer. Opt. Lett. 2013, 38, 3795–3798. [Google Scholar] [CrossRef]
- Vienne, G.; Coillet, A.; Grelu, P.; Amraoui, M.E.; Jules, J.-C.; Smektala, F.; Tong, L. Demonstration of a reef knot microfiber resonator. Opt. Express 2009, 17, 6224–6229. [Google Scholar] [CrossRef]
- Luo, H.; Sun, Q.; Xu, Z.; Jia, W.; Liu, D. Highly sensitive temperature sensor based on D–shaped microfiber with high birefringence. SPIE 2014, 9157, 915787. [Google Scholar] [CrossRef]
- Brambilla, G.; Finazzi, V.; Richardson, D.J. Ultra-low-loss optical fiber nanotapers. Opt. Express 2004, 12, 2258–2263. [Google Scholar] [CrossRef]
- Sumetsky, M.; Dulashko, Y.; Hale, A. Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Opt. Express 2004, 12, 3521–3531. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Birks, T.A.; Wadsworth, W.J.; Russell, P.S.J.; Mason, M.W. Supercontinuum generation in submicron fibre waveguides. Opt. Express 2004, 12, 2864–2869. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, S.; Gao, S.; Zhang, H.; Wan, L.; Huang, X.; Huang, B.; Feng, Y.; Liu, W.; Li, Z. High–Temperature Sensor Based on Fabry–Perot Interferometer in Microfiber Tip. Sensors 2018, 18, 202. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Liu, S.; Yu, W.; Deng, P. Microfiber Bragg grating for temperature and strain sensing applications. Photonic Sens. 2017, 7, 44–47. [Google Scholar] [CrossRef]
- Li, J.; Shen, X.; Sun, L.-P.; Guan, B.-O. Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure. Opt. Express 2013, 21, 12111–12121. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Lin, J.; Wang, W.; Tian, Y.; Pang, Y. The Characteristics in the Sensitivity of Microfiber Fabry-Perot Interferometric Transducers. IOP Conf. Ser. Earth Environ. Sci. 2018, 111, 012013. [Google Scholar] [CrossRef] [Green Version]
- Fiber Bragg Grating Manufacturing Workstation, Newport. Available online: https://www.newport.com/f/fiber-bragg-grating-workstation (accessed on 1 July 2019).
- Szameit, A.; Burghoff, J.; Pertsch, T.; Nolte, S.; Tünnermann, A.; Lederer, F. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 2006, 14, 6055–6062. [Google Scholar] [CrossRef]
- Pospiech, M.; Emons, M.; Steinmann, A.; Palmer, G.; Osellame, R.; Bellini, N.; Cerullo, G.; Morgner, U. Double waveguide couplers produced by simultaneous femtosecond writing. Opt. Express 2009, 17, 3555–3563. [Google Scholar] [CrossRef]
- Lee, K.K.C.; Mariampillai, A.; Haque, M.; Standish, B.A.; Yang, V.X.D.; Herman, P.R. Temperature–compensated fiber optic 3D shape sensor using femtosecond laser direct–written Bragg grating waveguides. SPIE 2014, 8972. [Google Scholar] [CrossRef]
- Grenier, J.R.; Fernandes, L.A.; Herman, P.R. Femtosecond laser inscription of asymmetric directional couplers for in–fiber optical taps and fiber cladding photonics. Opt. Express 2015, 23, 16760–16771. [Google Scholar] [CrossRef] [Green Version]
- Legoubin, S.; Douay, M.; Bernage, P.; Niay, P.; Boj, S.; Delevaque, E. Free spectral range variations of grating–based Fabry–Perot filters photowritten in optical fibers. J. Opt. Soc. Am. A 1995, 12, 1687–1694. [Google Scholar] [CrossRef]
- Statkiewicz-Barabach, G.; Mergo, P.; Urbanczyk, W. Bragg grating-based Fabry–Perot interferometer fabricated in a polymer fiber for sensing with improved resolution. J. Opt. 2016, 19, 015609. [Google Scholar] [CrossRef]
- Huang, W.-P. Coupled–mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Abdullah, F.; Emami, S.D.; Ismail, A. Fiber modeling and simulation of effective refractive index for tapered fiber with finite element method. In Proceedings of the 2016 IEEE 6th International Conference on Photonics (ICP), Kuching, Malaysia, 14–16 March 2016; pp. 1–3. [Google Scholar]
- Birks, T.A.; Li, Y.W. The shape of fiber tapers. J. Light. Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Dimmick, T.E.; Kakarantzas, G.; Birks, T.A.; Russell, P.S.J. Carbon dioxide laser fabrication of fused–fiber couplers and tapers. Appl. Opt. 1999, 38, 6845–6848. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.-P.; Gao, S.; Quan, Z.; Chang, Y.-L.; Ran, Y.; Jin, L.; Guan, B.-O. Ultrasensitive refractive-index sensors based on rectangular silica microfibers. Opt. Lett. 2011, 36, 3593–3595. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, F.; Hill, K.O.; Faucher, S.; Johnson, D.C. Low–loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure. J. Light. Technol. 1988, 6, 1476–1482. [Google Scholar] [CrossRef]
- Lim, K.S.; Harun, S.W.; Arof, H.; Ahmad, H. Fabrication and Applications of Microfiber. In Selected Topics on Optical Fiber Technology; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Harun, S.W.; Ahmad, H.; Jasim, A.A.; Sulaiman, A. Microfiber structures and its sensor and laser applications. In Proceedings of the 2012 Photonics Global Conference (PGC), Singapore, 13–16 December 2012; pp. 1–3. [Google Scholar]
- Caspar, C.; Bachus, E. Fibre–optic micro–ring–resonator with 2 mm diameter. Electron. Lett. 1989, 25, 1506–1508. [Google Scholar] [CrossRef]
- Florea, C.; Winick, K.A. Fabrication and Characterization of PhotonicDevices Directly Written in Glass UsingFemtosecond Laser Pulses. J. Light. Technol. 2003, 21, 246. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Liao, C.R.; Wang, D.N. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 2010, 35, 1007–1009. [Google Scholar] [CrossRef] [Green Version]
- Kalli, K.; Theodosiou, A.; Ioannou, A.; Lacraz, A. Femtosecond laser processing of optical fibres for novel sensor development. SPIE 2017, 10323. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Grobnic, D.; Hnatovsky, C.; Walker, R.B.; Lu, P. Extreme Environment Sensing Using Femtosecond Laser-Inscribed Fiber Bragg Gratings. Sensors 2017, 17, 2909. [Google Scholar] [CrossRef] [Green Version]
- Spirit Setting a New Stabdard for High-Precision Micromachining Using High Power Femtosecond Lasers. Available online: https://www.spectra-physics.com/products/ultrafast-lasers/spirit (accessed on 1 July 2019).
Parameter | Value |
---|---|
Core radius | 4.07 m |
Cladding radius | 62.5 m |
Surrounding medium radius | 20 m |
Core RI | 1.46 |
Cladding RI | 1.44681 |
Surrounding medium RI | 1.0 |
Design wavelength | 1550 nm |
Total number of LP modes | 110 [l = 0,1,2…10; m = 1,2,3…10] |
Grating shape | Rectangle |
Apodization | Uniform |
Grating length | 3 mm |
Structure length | 7 mm |
RI modulation | 3 × 10 |
Number of segments | 80 |
Model | Spirit One 1040-8-SHG (Second Harmonic Generator) |
---|---|
Repetition rate | 200 KHz OR 1 MHz |
Pulse energy | >39 J at 200 KHz |
Pulse width | <400 fs (327 fs) |
Pulse picker divider | 3230 |
Beam Diameter at exit | 2 ± 0.2 mm |
Wavelength (SHG) | 520 ± 3 nm |
Output power (SHG) | >4 W at 200 KHz |
Wavelength | Equation |
---|---|
FBG-Peak | Y = 0.00073 X + 1542.033 nm |
FP-P1 | Y = 0.00232 X + 1547.095 nm |
FP-P2 | Y = 0.00233 X + 1547.265 nm |
FP-d1 | Y = 0.00233 X + 1547.196 nm |
Cycle | Phase | FP | FBG |
---|---|---|---|
Cycle I | Heating | Y = (0.00886)X + 1546.89 nm | Y = (0.00881)X + 1541.789 nm |
Cooling | Y = (0.00891)X + 1546.852 nm | Y = (0.00883)X + 1541.746 nm | |
Cycle II | Heating | Y = (0.00886)X + 1546.883 nm | Y = (0.00877)X + 1541.773 nm |
Cooling | Y = (0.00883)X + 1546.861 nm | Y = (0.00875)X + 1541.751 nm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madan, A.; Yap, S.H.K.; Paulose, V.; Chang, W.; Shum, P.P.; Hao, J. Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper. Appl. Sci. 2020, 10, 1069. https://doi.org/10.3390/app10031069
Madan A, Yap SHK, Paulose V, Chang W, Shum PP, Hao J. Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper. Applied Sciences. 2020; 10(3):1069. https://doi.org/10.3390/app10031069
Chicago/Turabian StyleMadan, Aayush, Stephanie Hui Kit Yap, Varghese Paulose, Wonkeun Chang, Perry Ping Shum, and Jianzhong Hao. 2020. "Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper" Applied Sciences 10, no. 3: 1069. https://doi.org/10.3390/app10031069
APA StyleMadan, A., Yap, S. H. K., Paulose, V., Chang, W., Shum, P. P., & Hao, J. (2020). Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper. Applied Sciences, 10(3), 1069. https://doi.org/10.3390/app10031069