Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System
Abstract
:1. Introduction
2. Objective Function
2.1. Variations in PV Power
2.2. Ramp-Limit Control
2.3. Interleaved Boost Converter
3. Structure and Control Configuration of the Proposed System
3.1. Reference Current Generation
3.2. SOC of the Battery
4. HIL Implementation
5. Results and Discussion
5.1. Simulation Results
5.2. Real-Time HIL Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Hui, D.; Lai, X. Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations. IEEE Trans. Sustain. Energy 2013, 4, 464–473. [Google Scholar] [CrossRef]
- Brahmendra Kumar, G.V.; Kumar, G.A.; Eswararao, S.; Gehlot, D. Modelling and control of bess for solar integration for pv ramp rate control. In Proceedings of the 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Tamil Nadu, India, 28–29 March 2018; pp. 368–374. [Google Scholar]
- Kumar, G.; Sarojini, R.; Palanisamy, K.; Padmanaban, S.; Holm-Nielsen, J. Large Scale Renewable Energy Integration: Issues and Solutions. Energies 2019, 12, 1996. [Google Scholar] [CrossRef] [Green Version]
- Lahyani, A.; Venet, P.; Guermazi, A.; Troudi, A. Battery/Supercapacitors Combination in UPS. IEEE Trans. Power Electron. 2013, 28, 1509–1522. [Google Scholar] [CrossRef]
- Manandhar, U.; Ukil, A.; Gooi, H.B.; Tummuru, N.R.; Kollimalla, S.K.; Wang, B.; Chaudhari, K. Energy Management and Control for Grid Connected Hybrid Energy Storage System Under Different Operating Modes. IEEE Trans. Smart Grid 2019, 10, 1626–1636. [Google Scholar] [CrossRef]
- Anand, S.; Fernandes, B.G.; Guerrero, J. Distributed control to ensure proportional load sharing and improve voltage regulation in low-Voltage dc microgrids. IEEE Trans. Power Electron. 2013, 28, 1900–1913. [Google Scholar] [CrossRef] [Green Version]
- Lotfi, H.; Member, S.; Khodaei, A.; Member, S.; Indices, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W. Overview of power management strategies of hybrid ac/dc microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089. [Google Scholar] [CrossRef]
- Wu, D.; Tang, F.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids. IEEE Trans. Smart Grid 2015, 6, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Maza-Ortega, J.M.; Gomez-Exposito, A.; Barragan-Villarejo, M.; Romero-Ramos, E.; Marano-Marcolini, A. Voltage source converter-Based topologies to further integrate renewable energy sources in distribution systems. IET Renew. Power Gener. 2012, 6, 435–445. [Google Scholar] [CrossRef]
- Augustine, S.; Lakshminarasamma, N.; Mishra, M.K. Control of photovoltaic based low-Voltage dc microgrid system for power sharing with modified droop algorithm. IET Power Electron. 2016, 9, 1132–1143. [Google Scholar] [CrossRef]
- Lahon, R.; Gupta, C.P. Energy management of cooperative microgrids with high-Penetration renewables. IET Renew. Power Gener. 2018, 12, 680–690. [Google Scholar] [CrossRef]
- Solanki, B.V.; Bhattacharya, K.; Cañizares, C.A. A sustainable energy management system for isolated microgrids. IEEE Trans. Sustain. Energy 2017, 8, 1507–1517. [Google Scholar] [CrossRef]
- Hredzak, B.; Agelidis, V.; Demetriades, G. A low complexity control system for a hybrid dc power source based on ultracapacitor-lead acid battery configuration. IEEE Trans. Power Electron. 2014, 29, 2882–2891. [Google Scholar] [CrossRef]
- Kakimoto, N.; Satoh, H.; Takayama, S.; Nakamura, K. Ramp-Rate control of photovoltaic generator with electric double-Layer capacitor. IEEE Trans. Energy Convers. 2009, 24, 465–473. [Google Scholar] [CrossRef]
- Savoye, F.; Venet, P.; Millet, M.; Groot, J. Impact of periodic current pulses on Li-ion battery performance. IEEE Trans. Ind. Electron. 2012, 59, 3481–3488. [Google Scholar] [CrossRef]
- Jing, W.; Hung Lai, C.; Wong, S.H.W.; Wong, M.L.D. Battery-Supercapacitor hybrid energy storage system in standalone dc microgrids: A review. IET Renew. Power Gener. 2017, 11, 461–469. [Google Scholar] [CrossRef]
- Eghtedarpour, N.; Farjah, E. Distributed charge/discharge control of energy storages in a renewable-Energy-Based dc micro-Grid. IET Renew. Power Gener. 2014, 8, 45–57. [Google Scholar] [CrossRef]
- Oriti, G.; Julian, A.L.; Peck, N.J. Power-Electronics-Based energy management system with storage. IEEE Trans. Power Electron. 2016, 31, 452–460. [Google Scholar] [CrossRef]
- Han, Y.; Xie, X.; Deng, H.; Ma, W. Central energy management method for photovoltaic dc micro-Grid system based on power tracking control. IET Renew. Power Gener. 2017, 11, 1138–1147. [Google Scholar] [CrossRef]
- Tummuru, N.R.; Mishra, M.K.; Srinivas, S. Dynamic energy management of renewable grid integrated hybrid energy storage system. IEEE Trans. Ind. Electron. 2015, 62, 7728–7737. [Google Scholar] [CrossRef]
- Mahmood, H.; Michaelson, D.; Jiang, J. A power management strategy for PV/battery hybrid systems in islanded microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 870–882. [Google Scholar] [CrossRef]
- Lai, C.; Pan, C.; Cheng, M. High-Efficiency modular high step-Up interleaved boost converter for dc-Microgrid applications. IEEE Trans. Ind. Appl. 2012, 48, 161–171. [Google Scholar] [CrossRef]
- Zhao, Q.; Lee, F.C. High-Efficiency, high step-Up dc-dc converters. IEEE Trans. Power Electron. 2013, 18, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Marcos, J.; Storkel, O.; Marroyo, L.; Garcia, M.; Lorenzo, E. Storage requirements for pv power ramp-Rate control. Solar Energy 2014, 99, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; He, X.; Zhao, R. Zvt interleaved boost converters with built-In voltage doubler and current auto-Balance characteristic. IEEE Trans. Power Electron. 2008, 23, 2847–2854. [Google Scholar] [CrossRef]
- Kim, N.-K.; Cha, H.-J.; Seo, J.-J.; Won, D.-J. Soc management algorithm of battery energy storage system for pv ramp rate control. In Proceedings of the 2017 6th International Youth Conference on Energy (IYCE), Piscataway, NJ, USA, 21–24 June 2017; pp. 1–6. [Google Scholar]
Device Name | OP5700 |
---|---|
FPGA I/O lines High speed communication ports I/O connectors Monitoring connectors PC interfaces Power rating | Xilinx® Virtex®7 FPGA on VC707 board Processing speed: 200 ns–2 µs 256 lines, routed to eight analog or digital, 16 or 32 channels Up to 5 GBps Four panels of BD37 connectors Four panels of RJ45 connectors Standard PC connectors Input: 100–240 VAC, 50–60 Hz, 10/5 A Power: 600 W |
PV Pack Specifications at STC | Values |
Open circuit voltage (Vpv) | 40 V |
Short circuit current (ISC) | 25 A |
Battery Pack Specifications | Values |
Type | Li-ion |
Rated capacity | 12 Ah |
Terminal voltage | 12 V |
No. of batteries in series | 4 |
SC pack parameters | Values |
Terminal voltage (Vsc) | 12 V |
No. of SCs in series | 4 |
Max. peak current (Ip) | 200 A |
Capacitance (Csc) | 58 F |
Max. continuous current (Imc) | 19 A |
Converter Parameters | Values |
PV parameters | L1 = L2 = 10 mH |
Cpv = 500 µF | |
Battery parameters | Lb1 = Lb2 = 10 mH |
Cb1 = Cb2 = 500 µF | |
SC parameters | Lsc = 10 mH |
Csc = 500 µF | |
DC load parameter | Rdcl = 100 Ω |
DC link parameter | Vdc = 80 V |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, G.V.B.; Kaliannan, P.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System. Appl. Sci. 2020, 10, 1108. https://doi.org/10.3390/app10031108
Kumar GVB, Kaliannan P, Padmanaban S, Holm-Nielsen JB, Blaabjerg F. Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System. Applied Sciences. 2020; 10(3):1108. https://doi.org/10.3390/app10031108
Chicago/Turabian StyleKumar, G. V. Brahmendra, Palanisamy Kaliannan, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, and Frede Blaabjerg. 2020. "Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System" Applied Sciences 10, no. 3: 1108. https://doi.org/10.3390/app10031108
APA StyleKumar, G. V. B., Kaliannan, P., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2020). Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System. Applied Sciences, 10(3), 1108. https://doi.org/10.3390/app10031108