Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems
Abstract
:1. Introduction
2. Air Gap Membrane Distillation Configuration
3. Methodology
3.1. Membrane Desorber/Condenser Module
3.2. Experimental Conditions
3.3. Mathematical Model
3.4. Solar System Simulation
4. Results
4.1. Experimental Desorption Rate
4.2. Theoretical Desorption Rate
4.3. Solar System
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyaghchi, F.A.; Heidarnejad, P. Thermoeconomic assessment and multi-objective optimization of a solar micro CCHP based on organic rankine cycle for domestic application. Energy Convers. Manag. 2015, 97, 224–234. [Google Scholar] [CrossRef]
- Balaras, C.A.; Grossman, G.; Henning, H.M.; Infante Ferreira, C.A.; Podesser, E.; Wang, L.; Wiemken, E. Solar air conditioning in Europe—An overview. Renew. Sust. Energy Rev. 2007, 11, 299–314. [Google Scholar] [CrossRef]
- Lizarte, R.; Izquierdo, M.; Marco, J.D.; Palacios, E. An innovative solar-driven directly air-cooled LiBr-H2O absorption chiller prototype for residential use. Energy Build. 2012, 47, 1–11. [Google Scholar] [CrossRef]
- Ketjoy, N.; Yongphayoon, R.; Msansiri, K. Performance evaluation of 35 kW LiBr-H2O solar absorption cooling system in Thailand. Energy Procedia 2013, 34, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Al-Ugla, A.A.; El-Shaarawi, M.A.I.; Said, S.A.M. Alternative designs for a 24-hours operating solar-powered LiBr-water absorption air-conditioning technology. Int. J. Refrig. 2015, 53, 90–100. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Antonopoulos, K.A. Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system. Energy Convers. Manag. 2016, 123, 453–461. [Google Scholar] [CrossRef]
- Chen, J.F.; Dai, Y.J.; Wang, R.Z. Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol. Energy 2017, 151, 110–118. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Wang, R.Z. Solar-powered absorption cooling systems. In Advances in Solar Heating and Cooling; Wang, R.Z., Ge, T.S., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 251–298. [Google Scholar]
- Hong, S.J.; Hihara, E.; Dang, C. Mass recovery characteristics of hydrophobic hollow fiber membrane-based refrigerant mass exchangers in vapor absorption refrigeration systems. J. Membr. Sci. 2019, 580, 177–189. [Google Scholar] [CrossRef]
- Hong, S.J.; Hihara, E.; Dang, C. Analysis of adiabatic heat and mass transfer of microporous hydrophobic hollow fiber membrane-based generator in vapor absorption refrigeration system. J. Membr. Sci. 2018, 564, 415–427. [Google Scholar]
- Hong, S.J.; Hihara, E.; Dang, C. Novel absorption refrigeration system with a hollow fiber membrane-based generator. Int. J. Refrig. 2016, 67, 418–432. [Google Scholar] [CrossRef]
- Venegas, M.; García-Hernando, N.; de Vega, M. Experimental evaluation of a membrane-based microchannel Desorber operating at low desorption temperatures. Appl. Therm. Eng. 2020, 167, 114781. [Google Scholar] [CrossRef]
- Venegas, M.; García-Hernando, N.; de Vega, M. A parametric analysis on the effect of design and operating variables in a membrane-based desorber. Int. J. Refrig. 2019, 99, 47–58. [Google Scholar] [CrossRef]
- Venegas, M.; de Vega, M.; García-Hernando, N.; Ruiz-Rivas, U. Simplified model of a membrane-based rectangular micro-desorber for absorption chillers. Int. J. Refrig. 2016, 71, 108–123. [Google Scholar] [CrossRef]
- Ibarra-Bahena, J.; Rivera, W.; Romero, R.J.; Montiel-González, M.; Dehesa-Carrasco, U. Novel intermittent absorption cooling system based on membrane separation process. Appl. Therm. Eng. 2018, 136, 718–729. [Google Scholar] [CrossRef]
- Ibarra-Bahena, J.; Dehesa-Carrasco, U.; Romero, R.J.; Rivas-Herrera, B.; Rivera, W. Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems. Exp. Ther. Fluid Sci. 2017, 88, 145–159. [Google Scholar] [CrossRef]
- Ibarra-Bahena, J.; Dehesa-Carrasco, U.; Montiel-González, M.; Romero, R.J.; Basurto-Pensado, M.A.; Hernández-Cristóbal, O. Experimental evaluation of a membrane contactor unit used as a desorber/condenser with water/Carrol mixture for absorption heat transformer cycles. Exp. Ther. Fluid Sci. 2016, 76, 193–204. [Google Scholar] [CrossRef]
- Isfahani, R.N.; Fazeli, A.; Bigham, S.; Moghaddam, S. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes. Int. J. Multiphas. Flow 2014, 58, 27–38. [Google Scholar] [CrossRef]
- Bigham, S.; Isfahani, R.N.; Moghaddam, S. Direct molecular diffusion and micromixing for rapid dewatering of LiBr solution. Appl. Therm. Eng. 2014, 64, 371–375. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Z.; Feng, S.; Li, Y. Application of vacuum membrane distillation to lithium bromide absorption refrigeration system. Int. J. Refrig. 2009, 32, 1587–1596. [Google Scholar] [CrossRef]
- Thorud, J.D.; Liburdy, J.A.; Pence, D.V. Microchannel membrane separation applied to confined thin film desorption. J. Exp. Ther. Fluid Sci. 2006, 76, 713–723. [Google Scholar] [CrossRef]
- Asfand, F.; Bourouis, M. A review of membrane contactors applied in absorption refrigeration systems. Renew. Sust. Energy Rev. 2015, 45, 173–191. [Google Scholar] [CrossRef]
- Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental analysis of an air-gap membrane distillation solar desalination pilot system. J. Membr. Sci. 2011, 379, 386–396. [Google Scholar] [CrossRef]
- Kalla, S.; Upadhyaya, S.; Singh, K. Principles and advancements of air-gap membrane distillation. Rev. Chem. Eng. 2018, 35, 817–859. [Google Scholar] [CrossRef]
- Herlod, K.E.; Radermacher, R.; Klein, S.A. Absorption Chillers and Heat Pumps; CRC Press Inc.: Boca Raton, FL, USA, 1996. [Google Scholar]
- Eykens, L.; De Sitter, K.; Dotremont, C.; De Schepper, W.; Pinoy, L.; Van Der Bruggen, B. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Appl. Sci. 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Romero, R.J.; Basurto-Pensado, M.A.; Jiménez-Heredia, A.H.; Sanchez-Mondragón, J.J. Working fluid concentration measurement in solar air conditioning systems. Sol. Energy 2006, 80, 177–181. [Google Scholar] [CrossRef]
- Lee, R.J.; DiGuilio, R.M.; Jeter, S.M.; Teja, A.S. Properties of lithium bromide-water solutions at high temperatures and concentrations—II Density and viscosity. ASHRAE Trans. 1990, 96, 709–714. [Google Scholar]
- DiGuilio, R.M.; Lee, R.J.; Jeter, S.M.; Teja, A.S. Properties of lithium bromide-water solutions at high temperatures and concentrations—I Thermal conductivity. ASHRAE Trans. 1990, 96, 702–708. [Google Scholar]
- McNeely, N.A. Thermodynamics properties of aqueous solutions of lithium bromide. ASHRAE Trans. 1979, 85, 413–434. [Google Scholar]
- American Society of Heating. Method of Testing to Determine the Thermal Performance of Solar Collectors (ASHRAE Standard); Technical Report No. ASHRAE-93-1986/XAB; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1985. [Google Scholar]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Produced water treatment: Application of air gap membrane distillation. Desalination 2013, 309, 46–51. [Google Scholar] [CrossRef]
- Khalifa, A.E.; Imteyaz, B.A.; Lawal, D.U.; Abido, M.A. Heuristic optimization techniques for air gap membrane distillation system. Arab. J. Sci. Eng. 2017, 42, 1951–1965. [Google Scholar] [CrossRef]
- Arun, M.B.; Maiya, M.P.; Srinivasa Murthy, S. Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems. Appl. Therm. Eng. 2000, 20, 227–242. [Google Scholar] [CrossRef]
- Fatouh, M.; Srinivasa Murthy, S. HCFC22-based vapour absorption refrigeration system: Part I: Parametric studies. Int. J. Energ. Res. 1996, 20, 297–312. [Google Scholar] [CrossRef]
- Izquierdo-Gil, M.A.; Garcia-Payo, M.C.; Fernandez-Pineda, C. Air gap membrane distillation of sucrose aqueous solutions. J. Membr. Sci. 1999, 155, 291–307. [Google Scholar] [CrossRef]
- Dehesa-Carrasco, U.; Pérez-Rábago, C.A.; Arancibia-Bulnes, C.A. Experimental evaluation and modeling of internal temperatures in an air gap membrane distillation unit. Desalination 2013, 326, 47–54. [Google Scholar] [CrossRef]
- Venegas-Reyes, E.; Ortega-Avila, N.; Rodríguez-Muñoz, N.A.; Nájera-Trejo, M.; Martín-Domínguez, I.R.; Ibarra-Bahena, J. Parametric methodology to optimize the sizing of solar collector fields in series-parallel arrays. Processes 2019, 7, 294. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, O.A.; Aguilar, J.O.; Castrejón-García, R.; Venegas-Reyes, E.; Sosa-Montemayor, F. Parabolic trough concentrators for hot water generation: Comparison of the levelized cost of production. J. Renew. Sustain. Ener. 2013, 5, 023114. [Google Scholar] [CrossRef]
TLiBr,in (°C) | TLiBr,out (°C) | Tcw,in (°C) | Tcw,out (°C) |
---|---|---|---|
75.3 | 73.6 | 25.1 | 25.8 |
75.2 | 73.5 | 21.9 | 22.6 |
75.3 | 73.5 | 19.5 | 20.3 |
75.3 | 73.7 | 16.6 | 17.6 |
75.3 | 73.3 | 14.4 | 15.6 |
80.2 | 78.3 | 25.4 | 26.0 |
80.2 | 78.3 | 21.6 | 22.5 |
80.2 | 78.2 | 19.6 | 20.5 |
80.5 | 78.5 | 17.0 | 18.2 |
80.2 | 78.0 | 14.5 | 15.7 |
85.2 | 83.0 | 25.3 | 26.1 |
85.2 | 82.8 | 22.1 | 23.1 |
85.3 | 83.1 | 20.0 | 21.0 |
85.2 | 83.0 | 16.8 | 18.0 |
85.3 | 82.7 | 14.5 | 15.9 |
90.3 | 87.8 | 25.1 | 26.1 |
90.2 | 87.6 | 21.9 | 23.1 |
90.2 | 87.8 | 19.6 | 20.9 |
90.1 | 87.6 | 16.9 | 18.3 |
90.3 | 87.5 | 14.7 | 16.3 |
95.2 | 92.5 | 24.9 | 26.0 |
95.2 | 92.3 | 21.8 | 23.0 |
95.2 | 92.2 | 19.9 | 21.2 |
95.2 | 92.2 | 17.1 | 18.5 |
95.2 | 92.1 | 14.5 | 16.2 |
Variable | Sensor/Instrument | Operation Range | Uncertainty |
---|---|---|---|
Temperature (T) | RTD PT100 | −30 to 350 °C | ± 0.2 °C |
Volumetric flow (Vcw) | Volumetric flowmeter | 0 to 7 L/min | ± 5.0% f.s. * |
Volumetric flow (Vhf) | Volumetric flowmeter | 0 to 1.2 L/min | ± 4.0% f.s. * |
Mass flow (mLiBr) | Coriolis mass flowmeter | 0 to 4.0 × 10−2 kg/s | ± 0.1% |
Distillate water weight (wdis) | Electronic balance | 0 to 600 g | ± 0.01 g |
Refractive index (IR) | Electronic Refractometer | 1.3000 to 1.7200 | ± 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra-Bahena, J.; Venegas-Reyes, E.; Galindo-Luna, Y.R.; Rivera, W.; Romero, R.J.; Rodríguez-Martínez, A.; Dehesa-Carrasco, U. Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems. Appl. Sci. 2020, 10, 1110. https://doi.org/10.3390/app10031110
Ibarra-Bahena J, Venegas-Reyes E, Galindo-Luna YR, Rivera W, Romero RJ, Rodríguez-Martínez A, Dehesa-Carrasco U. Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems. Applied Sciences. 2020; 10(3):1110. https://doi.org/10.3390/app10031110
Chicago/Turabian StyleIbarra-Bahena, Jonathan, Eduardo Venegas-Reyes, Yuridiana R. Galindo-Luna, Wilfrido Rivera, Rosenberg J. Romero, Antonio Rodríguez-Martínez, and Ulises Dehesa-Carrasco. 2020. "Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems" Applied Sciences 10, no. 3: 1110. https://doi.org/10.3390/app10031110
APA StyleIbarra-Bahena, J., Venegas-Reyes, E., Galindo-Luna, Y. R., Rivera, W., Romero, R. J., Rodríguez-Martínez, A., & Dehesa-Carrasco, U. (2020). Feasibility Analysis of a Membrane Desorber Powered by Thermal Solar Energy for Absorption Cooling Systems. Applied Sciences, 10(3), 1110. https://doi.org/10.3390/app10031110