A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon
Abstract
:1. Introduction
- Evaluation of projections’ uncertainty and model validation through the use of an ensemble of similar simulations.
- Before performing the analysis of HW and, in order to minimize systematic errors typical of climate models, all simulated data are bias corrected using the same method.
- Other HW-related variables are considered, namely, the average daily maximum temperature, the absolute daily maximum temperature during a HW, and the sum of the daily maximum temperatures. These properties bring extra information for impact and mitigation studies.
- Monthly analysis for each extended summer months (May to October) when HWs have the strongest effects.
- Analysis by HW type according to its average daily maximum temperature.
- Inter-annual variability of HW.
- Estimation of return period for some HW properties.
2. Materials and Methods
2.1. The WRF Model
2.2. Simulated Data
- HIST-Simulation for the 1986–2005 period where the WRF was forced by the MPI-ESM-LR (Max Planck Institute Earth System Model—low resolution) (WRF-MPI) global climate model. This model is fully described by Giorgetta et al. [29] and participated in the Coupled Model Intercomparison Project Phase 5. The MPI-ESM-LR is considered to be one of the best models to simulate European climate [30,31], particularly for Portugal [32].
- MED—Simulation for the 2046–2065 period where the WRF was forced by the MPI model considering the RCP8.5 scenario.
- LONG—The same as MED but for the 2081–2100 period.
2.3. Observational Data
2.4. Bias Correction
2.5. Heat Waves
- NWAVE—Number of HW.
- NDAYS—Number of HW days.
- DUR—Duration (days) of a HW.
- Tmax_ave (°C)—Tmax averaged over all days of a HW.
- Tmin_ave (°C)—Tmin averaged over all days of a HW.
- Tmax_max (°C)—Maximum Tmax of all days of a HW.
- INT (intensity) (°C)—Tmax minus Tmax_c (i.e., excess of Tmax relative to Tmax_c) averaged over all days of a HW. Note that the same INT may represent distinct conditions. For example, INT equal to 3 °C may be present in a HW with Tmax_ave of 35 °C and Tmax_c of 32 °C or in a HW with Tmax_ave of 30 °C and Tmax_c of 27 °C.
- Tmax_sum (°C·day)—Sum of Tmax of all days of a HW. This variable quantifies, in absolute terms, the accumulated temperature during a HW that is relevant to heat stress and is similar to growing degree days used in phenology. For example, a Tmax_sum of 300 °C·day may represent a HW of 10 days with Tmax of 30 °C in each day or a HW of 8 days with Tmax of 37.5 °C in each day.
- RF (Recovery Factor) (°C)—Average daily temperature range during a HW. RF represents the average relief people may experience considering night time and daytime temperatures. RF is relevant since it incorporates minimum temperature, which contributes to assess the dissipation of heat overnight after a HW day [55,56]. Similar heat excess indices have been derived by Nairn and Fawcett [57]. Again, RF may represent distinct conditions. For example, a RF of 10 °C may be associated to a HW with Tmax_ave of 35 °C and Tmin_ave of 25 °C or a HW with Tmax_ave of 30 °C and Tmin_ave of 20 °C.
- HW in May: Tmax_c = 26 °C, Tmax=29 °C; DUR = 4 days
- Thus, INT = Tmax-Tmax_c = 3 °C
- DUR × INT = 4 × 3 =12 °C·day
- Tmax_sum = 29 × 4 = 116 °C·day
- HW in August: Tmax_c = 30 °C, Tmax = 33 °C; DUR = 4 days
- Thus, INT = Tmax-Tmax_c = 3 °C
- DUR*INT = 4 × 3 = 12 °C·day
- Tmax_sum = 33 × 4 = 132 °C·day
2.6. The Urban Heat Island and Heat Waves
- Without urban canopy parametrization (i.e., no_UCM).
- Using a single-layer urban canopy model (SLUCM) (i.e., UCM1).
- Using a multi-layer urban canopy model (BEP) (i.e., UCM2).
- The UHI in the Lisbon metropolitan area is essentially a nocturnal phenomenon with its intensity reaching between 1.5 and 2.0 °C during the night. However, in certain areas of Lisbon, the UHI intensity at night could reach values greater than 5 °C (not shown).
- During the day, urban near-surface urban air temperatures could be up to 0.5 °C lower than its rural surroundings.
- The intensity of the UHI is slightly stronger when the UCM is not used. This means that the gross features of the UHI intensity of Lisbon are mainly determined by the three urban surface types already specified in the land-use data of WRF and not by using an UCM coupled to WRF. In fact, the UCM acts to reduce the temperature and accumulated heat when compared to not using the UCM.
2.7. Return Periods
3. Results and Discussion
3.1. Validation—Recent climate
3.1.1. Temperature
3.1.2. Heat Waves
3.2. Future Climate Projections
3.2.1. Temperature
3.2.2. Heat Waves
3.2.3. Extreme Heat Waves
- In March and November HW with Tmax_ave greater than 29 °C.
- In October HW with long duration (i.e., 20 days) and Tmax_ave with more than 34 °C.
- In Summer, HW with long duration (i.e., 10 days) and Tmax_ave in excess of 42 °C.
3.2.4. The 2003 Heat Wave in Lisbon
3.2.5. Return Periods
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Sun, T.; Kotthaus, S.; Li, D.; Ward, H.C.; Gao, Z.; Ni, G.-H.; Grimmond, C.S.B. Attribution and mitigation of heat wave-induced urban heat storage change. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 14023. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res.-Atmos. 2014, 119, 500–512. [Google Scholar] [CrossRef] [Green Version]
- Demirtaş, M. The high-impact 2007 hot summer over Turkey: Atmospheric-blocking and heat-wave episodes. Meteorol. Appl. 2018, 3, 406–413. [Google Scholar] [CrossRef]
- Schaller, N.; Sillmann, J.; Anstey, J.; Fischer, E.M.; Grams, C.M.; Russo, S. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ. Res. Lett. 2018, 13, 054015. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, J.; Hu, W.; Tong, S. Heatwave and health events: A systematic evaluation of different temperature indicators, heatwave intensities and durations. Sci. Total Environ. 2018, 630, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Pereira, J.M.C.; Pereira, M.G.; Mota, B.; Calado, T.J.; Camara, C.C.; Espírito-Santo, F. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Clim. 2006, 26, 1741–1757. [Google Scholar] [CrossRef]
- Wreford, A.; Adger, W.N. Adaptation in agriculture: Historic effects of heat waves and droughts on UK agriculture. Int. J. Agric. Sustain. 2010, 8, 278–289. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lau, N.-C.; Nath, M.J. Model Simulation and Projection of European Heat Waves in Present-Day and Future Climates. J. Clim. 2014, 27, 3713–3730. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12256. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Fenner, D.; Holtmann, A.; Krug, A.; Scherer, D. Heat waves in Berlin and Potsdam, Germany—Long-term trends and comparison of heat wave definitions from 1893 to 2017. Int. J. Clim. 2019, 39, 2422–2437. [Google Scholar] [CrossRef]
- Acero, F.J.; Fernández-Fernández, M.I.; Carrasco, V.M.S.; Parey, S.; Hoang, T.T.H.; Dacunha-Castelle, D.; García, J.A. Changes in heat wave characteristics over Extremadura (SW Spain). Appl. Clim. 2018, 133, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Półrolniczak, M.; Bednorz, E. Circulation Conditions Effect on the Occurrence of Heat Waves in Western and Southwestern Europe. Atmosphere 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, D.; Carvalho, M.J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Clim. 2017, 37, 5192–5205. [Google Scholar] [CrossRef] [Green Version]
- Viceto, C.; Marta-Almeida, M.; Rocha, A. Future climate change of stability indices for the Iberian Peninsula. Int. J. Clim. 2017, 37, 4390–4408. [Google Scholar] [CrossRef]
- Viceto, C.; Pereira, S.C.; Rocha, A. Climate Change Projections of Extreme Temperatures for the Iberian Peninsula. Atmosphere 2019, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.; Barker, D.M.; Duda, M.G.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Notes, NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth 2016, 94, 94–105. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar] [CrossRef] [Green Version]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Stevens, B. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Brands, S.; Herrera, S.; San-Martin, D.; Gutiérrez, J.M. Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Clim. Res. 2011, 48, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Brands, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Clim. Dyn. 2013, 41, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Bartolomeu, S.; Carvalho, M.J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent trends of extreme precipitation indices in the Iberian Peninsula using observations and WRF model results. Phys. Chem. Earth Parts A/B/C 2016, 94, 10–21. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Melo-Gonçalves, P.; Teixeira, J.C.; Rocha, A. Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Haylock, M.R.; Hofstra, N.; Tank, A.M.G.K.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Appl. Clim. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Dosio, A.; Paruolo, P.; Rojas, R. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. J. Geophys. Res. 2012, 117, D17110. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- Sippel, S.; Otto, F.E.L.; Forkel, M.; Allen, M.R.; Guillod, B.P.; Heimann, M.; Reichstein, M.; Seneviratne, S.I.; Thonicke, K.; Mahecha, M.D. A novel bias correction methodology for climate impact simulations. Earth Syst. Dyn. 2016, 7, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Hnilica, J.; Hanel, M.; Puš, V. Multisite bias correction of precipitation data from regional climate models. Int. J. Clim. 2017, 37, 2934–2946. [Google Scholar] [CrossRef]
- Déqué, M. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob. Planet Chang. 2007, 57, 16–26. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Amengual, A.; Homar, V.; Romero, R.; Alonso, S.; Ramis, C. A Statistical Adjustment of Regional Climate Model Outputs to Local Scales: Application to Platja de Palma, Spain. J. Clim. 2012, 25, 939–957. [Google Scholar] [CrossRef] [Green Version]
- Ngai, S.T.; Tangang, F.; Juneng, L. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob. Planet Chang. 2017, 149, 79–90. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; p. 582. [Google Scholar]
- WMO. Guidelines on the definition and monitoring of extreme weather and climate events. TT-DEWCE WMO 2016. [Google Scholar]
- McGregor, G.R.; Bessemoulin, P.; Ebi, K.L.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; World Meteorological Organization and World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Guerreiro, S.B.; Kilsby, C.; Fowler, H.J. Assessing the threat of future megadrought in Iberia. Int. J. Clim. 2017, 37, 5024–5034. [Google Scholar] [CrossRef] [Green Version]
- Smoyer-Tomic, K.E.; Kuhn, R.; Hudson, A. Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada. Nat. Hazard. 2003, 28, 465–486. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. Defining Heatwaves, Heatwave Defined as a Heat Impact Event Servicing all Community and Business Sectors in Australia; CAWCR Technical Report No. 060; CAWCR: South Australia, Australia, 2013; p. 8. [Google Scholar]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of heat waves and corresponding measures: A review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Pattenden, S.; Nikiforov, B.; Armstrong, B.G. Mortality and temperature in Sofia and London. J. Epidemiol. Community Health 2003, 57, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, N.; Skinner, C.; Loughnan, M.; Tapper, N. A simple heat alert system for Melbourne, Australia. Int. J. Biometeorol. 2008, 52, 375–384. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilloni, I.; Barrucand, M. Temporal variability of the Buenos Aires, Argentina, urban heat island. Appl. Clim. 2012, 107, 47–58. [Google Scholar] [CrossRef]
- Gonçalves, A.; Ornellas, G.; Ribeiro, A.C.; Maia, F.; Rocha, A.; Feliciano, M. Urban cold and Heat Island in the City of Bragança (Portugal). Climate 2018, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-Y.; Kato, S.; Gou, Z. Application of Low-Cost Sensors for Urban Heat Island Assessment: A Case Study in Taiwan. Sustainability 2019, 11, 2759. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; Bou-Zeid, E. Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos. 2017, 122, 168–178. [Google Scholar] [CrossRef]
- Jiang, S.; Lee, X.; Wang, J.; Wang, K. Amplified urban heat islands during heat wave periods. J. Geophys. Res. Atmos. 2019, 124, 7797–7812. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zheng, Y.; Tan, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. Circulation-conditioned wintertime temperature bias in EURO-CORDEX regional climate models over Central Europe. J. Geophys. Res. Atmos. 2018, 123, 8661–8673. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Cardoso, R.M.; Lima, D.C.A.; Miranda, P.M.A. Future precipitation in Portugal: High-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim. Dyn. 2017, 49, 2503–2530. [Google Scholar] [CrossRef]
- Fernández, J.; Frías, M.D.; Cabos, W.D.; Cofiño, S.; Domínguez, M.; Fita, L.; Gaertner, M.A.; Garcia‑Diez, M.; Gutiérrez, J.M.; Jimenez‑Guerrero, P.; et al. Consistency of climate change projections from multiple global and regional model intercomparison projects. Clim. Dyn. 2018, 52, 1–18. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.; Hernández, E. Extreme summer temperatures in Iberia: Health impacts and associated synoptic conditions. Ann. Geophys. 2005, 23, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Trigo, R.M.; Ramos, A.M.; Nogueira, P.J.; Santos, F.D.; Garcia-Herrera, R.; Gouveia, C.; Espírito-Santo, F. Evaluating the impact of extreme temperature based indices in the 2003 heatwave excessive mortality in Portugal. Environ. Sci. Policy 2009, 12, 844–854. [Google Scholar] [CrossRef]
- Botelho, J.; Catarino, J.; Carreira, M.; Nogueira, P.J.; Calado, R.; Paixão, E.J. Onda de Calor de 2003: Os Seus Efeitos Sobre a Mortalidade de População Portuguesa; Direccão Geral de Saúde: Lisboa, Portugal, 2004. [Google Scholar]
Config | GCM | Initialization | RCM | Downscaling Realisation |
---|---|---|---|---|
mod1 | CNRM-CERFACS-CNRM-CM5 | r1i1p1 | CLMcom-CCLM4-8-17 | v1 |
mod2 | CNRM-CERFACS-CNRM-CM5 | r1i1p1 | SMHI-RCA4 | v1 |
mod3 | ICHEC-EC-EARTH | r12i1p1 | CLMcom-CCLM4-8-17 | v1 |
mod4 | ICHEC-EC-EARTH | r12i1p1 | DMI-HIRHAM5 | v1 |
mod5 | ICHEC-EC-EARTH | r12i1p1 | KNMI-RACMO22E | v1 |
mod6 | ICHEC-EC-EARTH | r12i1p1 | SMHI-RCA4 | v1 |
mod7 | ICHEC-EC-EARTH | r1i1p1 | KNMI-RACMO22E | v1 |
mod8 | IPSL-IPSL-CM5A-MR | r1i1p1 | IPSL-INERIS-WRF331F | v1 |
mod9 | IPSL-IPSL-CM5A-MR | r1i1p1 | SMHI-RCA4 | v1 |
mod10 | MPI-M-MPI-ESM-LR | r1i1p1 | CLMcom-CCLM4-8-17 | v1 |
mod11 | MPI-M-MPI-ESM-LR | r1i1p1 | MPI-CSC-REMO2009 | v1 |
mod12 | MPI-M-MPI-ESM-LR | r1i1p1 | SMHI-RCA4 | v1a |
mod14 | NCC-NorESM1-M | r1i1p1 | DMI-HIRHAM5 | v2 |
mod15 | NCC-NorESM1-M | r1i1p1 | SMHI-RCA4 | v1 |
Extremest HW—(DUR/Tmax_ave/Tmax_max)—Non-Summer Months | ||||||
---|---|---|---|---|---|---|
January | February | March | April | November | December | |
HIST | 04/19.6/21.0 | 04/21.0/22.0 | 05/26.0/27.1 | 04/28.4/29.2 | 03/23.6/24.8 | 04/22.1/23.8 |
MED | 15/20.4/23.7 | 03/23.9/24.3 | 03/27.7/30.1 | 08/29.2/31.0 | 09/26.3/29.8 | 05/21.8/23.4 |
10/21.6/24.9 | 12/26.0/28.5 | |||||
11/22.0/23.7 | ||||||
LONG | 11/20.8/23.9 | 02/23.6/24.9 | 04/29.9/31.8 | 06/30.1/31.8 | 14/27.3/30.7 | 14/23.5/26.9 |
20/21.1/23.0 | 06/28.5/31.6 | 09/29.1/30.9 | ||||
08/22.8/26.5 |
Extremest HW—(DUR/Tmax_ave/Tmax_max—Extended Summer Months | ||||||
---|---|---|---|---|---|---|
May | June | July | August | September | October | |
HIST | 04/32.8/35.2 | 04/38.1/41.2 | 16/36.9/40.6 | 04/37.7/39.0 | 03/36.4/37.0 | 06/31/31.8 |
10/32.0/34.4 | ||||||
MED | 04/34.2/36.5 | 05/37.1/38.8 | 11/38.0/43.0 | 09/38.5/41.6 | 16/33.1/35.8 | 16/33.1/35.8 |
06/34.1/36.0 | 04/37.2/39.0 | 12/38.1/41.5 | 16/36.5/39.0 | 06/38.2/39.5 | ||
13/38.0/42.6 | 10/35.6/37.0 | |||||
LONG | 12/37.2/40.6 | 06/41.5/46.8 | 13/37.9/44.0 | 13/38.5/43.4 | 10/38.5/41.9 | 14/33.3/36.4 |
12/37.3/42.0 | 11/39.4/42.2 | 08/40.1/44.1 | 10/38.5/42.2 | 20/33.3/35.9 | ||
10/38.8/42.4 | 08/40.9/44.1 | 19/34.9/37.3 | ||||
10/42.0/48.4 | 23/29.3/34.0 | |||||
10/42.1/44.1 | 19/33.4/34.7 | |||||
10/40.0/45.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, A.; Pereira, S.C.; Viceto, C.; Silva, R.; Neto, J.; Marta-Almeida, M. A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon. Appl. Sci. 2020, 10, 1149. https://doi.org/10.3390/app10031149
Rocha A, Pereira SC, Viceto C, Silva R, Neto J, Marta-Almeida M. A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon. Applied Sciences. 2020; 10(3):1149. https://doi.org/10.3390/app10031149
Chicago/Turabian StyleRocha, Alfredo, Susana C. Pereira, Carolina Viceto, Rui Silva, Jorge Neto, and Martinho Marta-Almeida. 2020. "A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon" Applied Sciences 10, no. 3: 1149. https://doi.org/10.3390/app10031149
APA StyleRocha, A., Pereira, S. C., Viceto, C., Silva, R., Neto, J., & Marta-Almeida, M. (2020). A Consistent Methodology to Evaluate Temperature and Heat Wave Future Projections for Cities: A Case Study for Lisbon. Applied Sciences, 10(3), 1149. https://doi.org/10.3390/app10031149