Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm for Permutation
Abstract
:1. Introduction
2. Literature Review
3. Fireworks Algorithm
3.1. The Introduction of Traditional FWA
- N solutions are chosen as the initial fireworks, which are generated randomly in the feasible domain.
- Evaluate the fitness value of the fireworks. Explosive fireworks and Gaussian fireworks are obtained from the initial fireworks by the explosion and Gaussian operations.
- Test the termination condition. N sparks would be selected in the all sparks as the initial fireworks in the next iteration if the termination condition is not satisfied.
3.2. The Improved Fireworks Algorithm
Algorithm 1. The pseudo-code of IFWA. |
Initialize parameters and the location of the fireworks. Evaluate the fitness value of the fireworks. = 0; while ( < iterations) Generate explosion fireworks Calculate by Formula (7). for each firework (i = 1, 2, …, N) do Calculate the by Formula (1). if < = end Calculate by Formulae (2) and (3). for j = 1: q = round(d×rand(0,1)) (d is the dimension of sparks). Calculate the displacement h = for p = 1:q Randomly select kth dimension of (Not repeating). if is out of bounds then Map sparks to a new location by Formula (5) end if end for end for end for Generate mutation fireworks for i = 1:mutation_num (mutation_num is the number of mutation fireworks). Randomly select . q = round(d×rand(0,1)). for p = 1:q Randomly select the kth dimension of (Not repeating). Generate the mutation sparks by Formula (8). if out of bounds then Map sparks to a new location by Formula (5). end if end for end for Select fireworks in the next iteration Select sparks as the initial fireworks in the next iteration by the new selection strategy. Update the optimal value. = + 1 end while return optimization results |
4. Problem Description
4.1. Permutation Flow Shop Scheduling Problems
- Each machine can process only one job at a time;
- Each job is processed on one machine at a time;
- The processing sequence of all jobs on different machines is same, which is unknown;
- The processing sequence of each job on all machines is same, which is known;
- The processing times of each job on each machine are given;
- Pre-emption is not allowed.
4.2. Hybrid Flow Shop Scheduling Problems
- Each machine can process only one job at a time;
- Each job is processed on one machine at a time;
- Each job is processed at each stage in the same order;
- The parallel machines in each stage are independent;
- The processing time of the jobs is related to machines and process, and is known;
- Pre-emption, lot streaming, and backlogging are not allowed [51].
5. Computational Experiments
5.1. Permutation Flow Shop Scheduling Problem
5.2. The Hybrid Flow Shop Scheduling Problem
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bibiks, K.; Hu, Y.F.; Li, J.P.; Pillai, P.; Smith, A. Improved discrete cuckoo search for the resource-constrained project scheduling problem. Appl. Soft Comput. 2018, 69, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X.; Cai, L. On Achieving Fair and Throughput-Optimal Scheduling for TCP Flows in Wireless Networks. IEEE Trans. Wirel. Commun. 2016, 15, 7996–8008. [Google Scholar] [CrossRef]
- Huang, W.T.; Chen, P.S.; Liu, J.J.; Chen, Y.R.; Chen, Y.H. Dynamic configuration scheduling problem for stochastic medical resources. J. Biomed. Inform. 2018, 80, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.L. Electric Vehicle Scheduling Considering Co-optimized Customer and System Objectives. IEEE Trans. Sustain. Energy 2018, 9, 410–419. [Google Scholar] [CrossRef]
- Reddy, S.S. Optimal scheduling of thermal-wind-solar power system with storage. Renew. Energy 2017, 101, 1357–1368. [Google Scholar] [CrossRef]
- Vagropoulos, S.I.; Balaskas, G.A.; Bakirtzis, A.G. An Investigation of Plug-In Electric Vehicle Charging Impact on Power Systems Scheduling and Energy Costs. IEEE Trans. Power Syst. 2017, 32, 1902–1912. [Google Scholar] [CrossRef]
- Wang, Z.J.; Hu, H.; Gong, J. Modeling Worker Competence to Advance Precast Production Scheduling Optimization. J. Constr. Eng. Manag. 2018, 144, 04018098. [Google Scholar] [CrossRef]
- Branke, J.; Nguyen, S.; Pickardt, C.W.; Zhang, M.J. Automated Design of Production Scheduling Heuristics: A Review. IEEE Trans. Evolut. Comput. 2016, 20, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Ribas, I.; Leisten, R.; Framinan, J.M. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 2010, 37, 1439–1454. [Google Scholar] [CrossRef]
- Lei, D.M.; Guo, X.P. Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration. Comput. Oper. Res. 2016, 65, 76–82. [Google Scholar] [CrossRef]
- Lei, D.M.; Zheng, Y.L. Hybrid flow shop scheduling with assembly operations and key objectives: A novel neighborhood search. Appl. Soft Comput. 2017, 61, 122–128. [Google Scholar] [CrossRef]
- Liu, W.B.; Jin, Y.; Price, M. A new improved NHE heuristic for permutation flowshop scheduling problems. Int. J. Prod. Econ. 2017, 193, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Che, A.; Kats, V.; Levner, E. An efficient bicriteria algorithm for stable robotic flow shop scheduling. Eur. J. Oper. Res. 2017, 260, 964–971. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, S.Y. A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem. Appl. Soft Comput. 2013, 13, 1459–1463. [Google Scholar] [CrossRef]
- Huang, X.B.; Li, H.B.; Zhu, Y.C. Short-term ice accretion forecasting model for transmission lines with modified time-series analysis by fireworks algorithm. IET Gener. Transm. Distrib. 2018, 12, 1074–1080. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, M.; Chu, C.B. A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. Int. J. Prod. Res. 2015, 53, 1143–1167. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, D.; He, J.; Wang, Q.; Liu, A.; Xiao, J. Mixed Integer Programming Formulations for Two-Machine Flow Shop Scheduling with an Availability Constraint. Arab. J. Sci. Eng. 2018, 43, 777–788. [Google Scholar] [CrossRef]
- Palmer, D.S. Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time—A Quick Method of Obtaining a Near Optimum. J. Oper. Res. Soc. 1965, 16, 101–107. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Gupta, J.N.D. A Functional Heuristic Algorithm for the Flowshop Scheduling Problem. J. Oper. Res. Soc. 1971, 22, 39–47. [Google Scholar] [CrossRef]
- Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68. [Google Scholar] [CrossRef]
- Campbell, H.G.; Dudek, R.A.; Smith, M.L. A heuristic algorithm for the n job, m machine sequencing problem. Manag. Sci. 1970, 16, 630. [Google Scholar] [CrossRef] [Green Version]
- Kalczynski, P.J.; Kamburowski, J. On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega Int. J. Manag. Sci. 2007, 35, 53–60. [Google Scholar] [CrossRef]
- Semanco, P.; Modrak, V. A Comparison of Constructive Heuristics with the Objective of Minimizing Makespan in the Flow-Shop Scheduling Problem. Acta Polytech. Hung. 2012, 9, 177–190. [Google Scholar]
- Zhang, H.; Zhou, A.M.; Song, S.M.; Zhang, Q.F.; Gao, X.Z.; Zhang, J. A Self-Organizing Multiobjective Evolutionary Algorithm. IEEE Trans. Evolut. Comput. 2016, 20, 792–806. [Google Scholar] [CrossRef]
- Engin, O.; Guclu, A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl. Soft Comput. 2018, 72, 166–176. [Google Scholar] [CrossRef]
- Fathi, M.; Rodriguez, V.; Fontes, D.B.M.M.; Alvarez, M.J. A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines. Int. J. Prod. Res. 2016, 54, 878–893. [Google Scholar] [CrossRef] [Green Version]
- Precup, R.E.; David, R.C.; Petriu, E.M. Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity. IEEE Trans. Ind. Electron. 2017, 64, 527–534. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Prabaharan, T.; Yang, X.S. A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Trans. Evolut. Comput. 2014, 18, 301–305. [Google Scholar] [CrossRef]
- Dasgupta, P.; Das, S. A Discrete Inter-Species Cuckoo Search for flowshop scheduling problems. Comput. Oper. Res. 2015, 60, 111–120. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Tosun, O.; Geetha, M. Hybrid monkey search algorithm for flow shop scheduling problem under makespan and total flow time. Appl. Soft Comput. 2017, 55, 82–92. [Google Scholar] [CrossRef]
- Tang, D.B.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput. Ind. 2016, 81, 82–95. [Google Scholar] [CrossRef]
- Lin, Q.; Gao, L.; Li, X.Y.; Zhang, C.J. A hybrid backtracking search algorithm for permutation flow-shop scheduling problem. Comput. Ind. Eng. 2015, 85, 437–446. [Google Scholar] [CrossRef]
- Komaki, G.M.; Kayvanfar, V. Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J. Comput. Sci. 2015, 8, 109–120. [Google Scholar] [CrossRef]
- Jiang, E.D.; Wang, L. An improved multi-objective evolutionary algorithm based on decomposition for energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time. Int. J. Prod. Res. 2019, 57, 1756–1771. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 2018, 85, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Zhu, Y. Fireworks Algorithm for Optimization. In Proceedings of the Advances in Swarm Intelligence, Berlin/Heidelberg, Germany, 12–15 June 2010; pp. 355–364. [Google Scholar]
- Babu, T.S.; Ram, J.P.; Sangeetha, K.; Laudani, A.; Rajasekar, N. Parameter extraction of two diode solar PV model using Fireworks algorithm. Sol. Energy 2016, 140, 265–276. [Google Scholar] [CrossRef]
- Guendouz, M.; Amine, A.; Hamou, R.M. A discrete modified fireworks algorithm for community detection in complex networks. Appl. Intell. 2017, 46, 373–385. [Google Scholar] [CrossRef]
- El Majdouli, M.A.; Rbouh, I.; Bougrine, S.; El Benani, B.; El Imrani, A.A. Fireworks algorithm framework for Big Data optimization. Memet. Comput. 2016, 8, 333–347. [Google Scholar] [CrossRef]
- Ye, S.G.; Ma, H.P.; Xu, S.; Yang, W.Q.; Fei, M.R. An effective fireworks algorithm for warehouse-scheduling problem. Trans. Inst. Meas. Control 2017, 39, 75–85. [Google Scholar] [CrossRef]
- Yu, C.; Kelley, L.; Zheng, S.Q.; Tan, Y. Fireworks Algorithm with Differential Mutation for Solving the CEC 2014 Competition Problems. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 3238–3245. [Google Scholar]
- Jadoun, V.K.; Pandey, V.C.; Gupta, N.; Niazi, K.R.; Swarnkar, A. Integration of renewable energy sources in dynamic economic load dispatch problem using an improved fireworks algorithm. IET Renew. Power Gener. 2018, 12, 1004–1011. [Google Scholar] [CrossRef]
- Arsic, A.; Tuba, M.; Jordanski, M. Fireworks algorithm applied to wireless sensor networks localization problem. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 4038–4044. [Google Scholar]
- Zheng, S.; Janecek, A.; Tan, Y. Enhanced Fireworks Algorithm. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2069–2077. [Google Scholar]
- Zhang, B.; Zheng, Y.J.; Zhang, M.X.; Chen, S.Y. Fireworks Algorithm with Enhanced Fireworks Interaction. IEEE ACM Trans. Comput. Biol. Bioinform. 2017, 14, 42–55. [Google Scholar] [CrossRef]
- Xue, J.J.; Wang, Y.; Li, H.; Meng, X.F.; Xiao, J.Y. Advanced Fireworks Algorithm and Its Application Research in PID Parameters Tuning. Math. Probl. Eng. 2016, 2016, 2534632. [Google Scholar] [CrossRef]
- Tsai, J.T.; Yang, C.I.; Chou, J.H. Hybrid sliding level Taguchi-based particle swarm optimization for flowshop scheduling problems. Appl. Soft Comput. 2014, 15, 177–192. [Google Scholar] [CrossRef]
- Meng, L.L.; Zhang, C.Y.; Shao, X.Y.; Ren, Y.P.; Ren, C.L. Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. Int. J. Prod. Res. 2019, 57, 1119–1145. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Jons, S.; Hernandez, A. Solution of a flexible jobshop scheduling problem using an Estimation of Distribution Algorithm. Rev. Iberoam. Autom. Inform. 2015, 12, 49–57. [Google Scholar]
- Yu, C.L.; Semeraro, Q.; Matta, A. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Comput. Oper. Res. 2018, 100, 211–229. [Google Scholar] [CrossRef]
- Sun, Z.W.; Gu, X.S. A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine. J. Cent. South Univ. 2017, 24, 1779–1788. [Google Scholar] [CrossRef]
Job | Stages | ||||||
---|---|---|---|---|---|---|---|
Melting (s) | Shaping (s) | Grinding (s) | Surface Decoration (s) | Dyeing (s) | Testing (s) | Packaging (s) | |
1 | 692 | 310 | 832 | 630 | 258 | 147 | 255 |
2 | 581 | 582 | 14 | 214 | 147 | 753 | 806 |
3 | 475 | 475 | 785 | 578 | 852 | 2 | 699 |
4 | 23 | 196 | 696 | 214 | 586 | 356 | 877 |
5 | 158 | 325 | 530 | 785 | 325 | 565 | 412 |
6 | 796 | 874 | 214 | 236 | 896 | 898 | 302 |
7 | 542 | 205 | 578 | 963 | 325 | 800 | 120 |
Algorithm | Parameters | Value |
---|---|---|
IFWA and FWA | Number of fireworks N | 5 |
Constant a | 0.04 | |
Constant b | 0.8 | |
A | 7 | |
M | 50 | |
Ainitial | (ub-lb) × 0.02 | |
Afinal | (ub-lb) × 0.001 | |
PSO | C1, C2 | 1.49445 |
Population size | 40 | |
Range of particle velocity | [–2,2] | |
WOA | Population size | 40 |
b | 1 | |
p | 0.5 |
Algorithm | Theoretical Optimal Value (s) | Success Rate | Optimal Value (s) | Average (s) | Worst (s) | STD | Time (s) |
---|---|---|---|---|---|---|---|
IFWA | 6590 | 90% | 6590 | 6595.3 | 6643 | 16.31 | 2.14 |
FWA | 75% | 6590 | 6603.2 | 6643 | 23.54 | 3.40 | |
PSO | 30% | 6590 | 6665 | 7016 | 119.5 | 0.34 | |
WOA | 55% | 6590 | 6614 | 6643 | 27.05 | 0.26 |
Job | Stages | |||||||
---|---|---|---|---|---|---|---|---|
Lathe (s) | Planer (s) | Grinder (s) | ||||||
1 | 2 | 3 | 1 | 2 | 1 | 2 | 3 | |
1 | 24 | 75 | 51 | 84 | 62 | 39 | 54 | 11 |
2 | 3 | 75 | 17 | 86 | 73 | 99 | 31 | 70 |
3 | 66 | 17 | 71 | 52 | 23 | 33 | 16 | 18 |
4 | 16 | 12 | 91 | 48 | 2 | 14 | 15 | 80 |
5 | 80 | 17 | 22 | 89 | 14 | 38 | 14 | 51 |
6 | 41 | 63 | 87 | 7 | 77 | 56 | 71 | 55 |
7 | 33 | 84 | 21 | 51 | 97 | 63 | 46 | 21 |
Algorithm | Parameters | Value |
---|---|---|
IFWA and FWA | Number of fireworks N | 5 |
M | 50 | |
A | 4 | |
Constant a | 0.04 | |
Constant b | 0.8 | |
Ainitial | (ub - lb) × 0.02 | |
Afinal | (ub - lb) × 0.001 | |
PSO | C1, C2 | 1.49445 |
Population size | 40 | |
Range of particle velocity | [−1,1] | |
WOA | Population size | 40 |
b | 1 | |
p | 0.5 |
Algorithm | Best (s) | Average (s) | Worst (s) | STD (s) | Time (s) |
---|---|---|---|---|---|
IFWA | 165 | 174 | 196 | 9.31 | 6.24 |
FWA | 171 | 208 | 233 | 18.51 | 12.85 |
PSO | 182 | 200 | 225 | 11.84 | 1.78 |
WOA | 172 | 198 | 245 | 21.22 | 1.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Xue, H.; Tseng, M.-L.; Lim, M.K.; Liu, K. Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm for Permutation. Appl. Sci. 2020, 10, 1174. https://doi.org/10.3390/app10031174
Pang X, Xue H, Tseng M-L, Lim MK, Liu K. Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm for Permutation. Applied Sciences. 2020; 10(3):1174. https://doi.org/10.3390/app10031174
Chicago/Turabian StylePang, Xuelian, Haoran Xue, Ming-Lang Tseng, Ming K. Lim, and Kaihua Liu. 2020. "Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm for Permutation" Applied Sciences 10, no. 3: 1174. https://doi.org/10.3390/app10031174
APA StylePang, X., Xue, H., Tseng, M. -L., Lim, M. K., & Liu, K. (2020). Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm for Permutation. Applied Sciences, 10(3), 1174. https://doi.org/10.3390/app10031174