Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wit, A.; Eliasz, J.; Gajewski, J.; Janiak, J.; Jaszczuk, J.; Trzaskoma, Z. Maximal isometric muscle torque assessment in elite athletes. Acta Bioeng. Biomech. 2002, 4, 591–592. [Google Scholar]
- Ergün, M.; Işlegen, C.; Taşkiran, E. A cross-sectional analysis of sagittal knee laxity and isokinetic muscle strength in soccer players. Int. J. Sports Med. 2004, 25, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Zakas, A. Bilateral isokinetic peak torque of quadriceps and hamstring muscles in professional soccer players with dominance on one or both two sides. J. Sports Med. Phys. Fitness 2006, 46, 28–35. [Google Scholar] [PubMed]
- Ellenbecker, T.S.; Roetert, E.P.; Sueyoshi, T.; Riewald, S. A descriptive profile of age-specific knee extension flexion strength in elite junior tennis players. Br. J. Sports Med. 2007, 41, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-extremity strength ratios of professional soccer players according to field position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef]
- Lech, G.; Chwała, W.; Ambroży, T.; Sterkowicz, S. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants. J. Hum. Kinet. 2015, 45, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Sterkowicz, S.; Lech, G.; Sterkowicz-Przybycień, K.; Chwała, W.; Ambroży, T.; Pałka, T. Relationship of maximal isometric torque produced in flexors and extensors rate to technique by judo athletes. Acta Bioeng. Biomech. 2018, 20, 65–71. [Google Scholar]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Ruas, V.C.; McManus, T.R.; Bentes, M.C.; Costa, B.P. Acute effects of proprioceptive neuromuscular facilitation on peak torque and muscle imbalance. J. Funct. Morphol. Kinesiol. 2018, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Bamaç, B.; Çolak, T.; Özbek, A.; Çolak, S.; Cinel, Y.; Yenigün, Ö. Isokinetic performance in elite volleyball and basketball players. Kinesiology 2008, 40, 183–189. [Google Scholar]
- Hadzic, V.; Sattler, T.; Markovic, G.; Veselko, M.; Dervisevic, E. The isokinetic strength profile of quadriceps and hamstrings in elite volleyball players. Isokinet. Exerc. Sci. 2010, 18, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.; Carvalho, P.; Moreira, C.; Carneiro, A.; Santos, R. Muscle strength assessment of knee flexors and extensors. Comparative study between basketball, football, handball and volleyball athletes. Int. J. Sports Sci. 2015, 5, 192–200. [Google Scholar]
- Jones, P.A.; Thomas, C.; Dos’Santos, T.; McMahon, J.J.; Graham-Smith, P. The role of eccentric strength in 180° turns in female soccer players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struzik, A.; Pietraszewski, B. Relationships between hamstrings-to-quadriceps ratio and variables describing countermovement and drop jumps. Appl. Bionics Biomech. 2019, 2019, 4505481. [Google Scholar] [CrossRef] [PubMed]
- Zatsiorsky, V.M.; Kraemer, W.J. Science and Practice of Strength Training, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2006; pp. 17–46. [Google Scholar]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Doran, D. Fitness assessment. In Science and Soccer; Reilly, T., Williams, A.M., Eds.; Routledge: London, UK; New York, NY, USA, 2003; pp. 21–46. [Google Scholar]
- Pietraszewski, B.; Siemieński, A.; Bober, T.; Struzik, A.; Rutkowska-Kucharska, A.; Nosal, J.; Rokita, A. Lower extremity power in female soccer athletes: A pre-season and in-season comparison. Acta Bioeng. Biomech. 2015, 17, 129–135. [Google Scholar]
- Bona, C.C.; Filho, H.T.; Izquierdo, M.; Ferraz, R.M.P.; Marques, M.C. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions. J. Sports Med. Phys. Fitness 2017, 57, 923–929. [Google Scholar]
- Zago, M.; Sforza, C.; Dolci, C.; Tarabini, M.; Galli, M. Use of machine learning and wearable sensors to predict energetics and kinematics of cutting maneuvers. Sensors 2019, 19, 3094. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.A.; Tarpenning, K.M.; Marino, F.E. Relationships between isokinetic knee strength, single-sprint performance, and repeated-sprint ability in football players. J. Strength Cond. Res. 2004, 18, 867–872. [Google Scholar]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Cerrah, A.O.; Gungor, E.O.; Soylu, A.R.; Ertan, H.; Lees, A.; Bayrak, C. Muscular activation patterns during the soccer in-step kick. Isokinet. Exerc. Sci. 2011, 19, 181–190. [Google Scholar] [CrossRef]
- Dvir, Z.; Eger, G.; Halperin, N.; Shklar, A. Thigh muscle activity and anterior cruciate ligament insufficiency. Clin. Biomech. 1989, 4, 87–91. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Magnusson, S.P.; Larsson, B.; Dyhre-Poulsen, P. A new concept for isokinetic hamstring: Quadriceps muscle strength ratio. Am. J. Sports Med. 1998, 26, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Struzik, A.; Siemieński, A.; Bober, T.; Pietraszewski, B. Ratios of torques of antagonist muscle groups in female soccer players. Acta Bioeng. Biomech. 2018, 20, 153–158. [Google Scholar]
- Pietraszewski, B.; Zawadzki, J.; Pietraszewska, J.; Burdukiewicz, A. Body composition and muscle torques of lower limbs. Biol. Sport 1997, 14, 104–107. [Google Scholar]
- Lewandowska, J.; Buśko, K.; Pastuszak, A.; Boguszewska, K. Somatotype variables related to muscle torque and power in judoists. J. Hum. Kinet. 2011, 30, 21–28. [Google Scholar] [CrossRef]
- Kim, S.E.; Hong, J.; Cha, J.Y.; Park, J.M.; Eun, D.; Yoo, J.; Jee, Y.S. Relative appendicular skeletal muscle mass is associated with isokinetic muscle strength and balance in healthy collegiate men. J. Sports Sci. 2016, 34, 2114–2120. [Google Scholar] [CrossRef]
- Camic, C.L.; Housh, T.J.; Mielke, M.; Zuniga, J.; Hendrix, C.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J. Validity of fat-free weight equations for predicting isokinetic peak torque in young wrestlers. Int. J. Sport Sci. Health 2018, 5, 69–78. [Google Scholar]
- Norsuriani, S.; Ooi, F. Bone health status, isokinetic muscular strength and power, and body composition of Malay adolescent female silat and taekwondo practitioners. Int. J. Public Health Clin. Sci. 2018, 5, 244–262. [Google Scholar]
- Norton, K.; Olds, T. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; UNSW Press: Sydney, Australia, 2002. [Google Scholar]
- Cozette, M.; Leprêtre, P.-M.; Doyle, C.; Weissland, T. Isokinetic strength ratios: Conventional methods, current limits and perspectives. Front. Physiol. 2019, 10, 567. [Google Scholar] [CrossRef]
- Matković, B.R.; Mišigoj-Duraković, M.; Matković, B.; Janković, S.; Ružić, L.; Leko, G.; Kondrič, M. Morphological differences of elite Croatian soccer players according to the team position. Coll. Antropol. 2003, 27, 167–174. [Google Scholar] [PubMed]
- Hazir, T. Physical characteristics and somatotype of soccer players according to playing level and position. J. Hum. Kinet. 2010, 26, 83–95. [Google Scholar] [CrossRef]
- Kulaga, Z.; Litwin, M.; Tkaczyk, M.; Różdżyńska, A.; Barwicka, K.; Grajda, A.; Świąder, A.; Gurzkowska, B.; Napieralska, E.; Pan, H. The height-, weight-, and BMI-for-age of Polish school-aged children and adolescents relative to international and local growth references. BMC Public Health 2010, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buśko, K.; Górski, M.; Nikolaidis, P.T.; Mazur-Różycka, J.; Łach, P.; Staniak, Z.; Gajewski, J. Leg strength and power in Polish striker soccer players. Acta Bioeng. Biomech. 2018, 20, 109–116. [Google Scholar]
- Váczi, M.; Tollár, J.; Meszler, B.; Juhász, I.; Karsai, I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J. Hum. Kinet. 2013, 36, 17–26. [Google Scholar] [CrossRef]
- Cometti, G.; Maffiuletti, N.A.; Pousson, M.; Chatard, J.C.; Maffulli, N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int. J. Sports Med. 2001, 22, 45–51. [Google Scholar] [CrossRef]
- Zawadzki, J.; Bober, T.; Siemieński, A. Validity analysis of the biodex system 3 dynamometer under static and isokinetic conditions. Acta Bioeng. Biomech. 2010, 12, 25–32. [Google Scholar]
- Struzik, A.; Pietraszewski, B.; Bober, T. The biodex system used in the evaluation of the proportion of muscle torque and hamstring muscle injury risk. Pol. J. Sports Med. 2015, 1, 11–17. [Google Scholar]
- Chen, Y.; Li, J.X.; Hong, Y.; Wang, L. Plantar stress-related injuries in male basketball players: Variations on plantar loads during different maximum-effort maneuvers. Biomed. Res. Int. 2018, 2018, 4523849. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Zazulak, B.T. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J. Sci. Med. Sport 2008, 11, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, J. Hamstring to quadriceps strength ratio and noncontact leg injuries: A prospective study during one season. Isokinet. Exerc. Sci. 2011, 19, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cheung, R.T.; Smith, A.W.; Wong del, P. H:Q ratios and bilateral leg strength in college field and court sports players. J. Hum. Kinet. 2012, 33, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Dervišević, E.; Hadžić, V. Quadriceps and hamstrings strength in team sports: Basketball, football and volleyball. Isokinet. Exerc. Sci. 2012, 20, 293–300. [Google Scholar] [CrossRef]
- Orchard, J.W.; Driscoll, T.; Seward, H.; Orchard, J.J. Relationship between interchange usage and risk of hamstring injuries in the Australian Football League. J. Sci. Med. Sport 2012, 15, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Rahnama, N.; Mokhtar, A.H.; Yusof, A. Bilateral and unilateral asymmetries of isokinetic strength and flexibility in male young professional soccer players. J. Hum. Kinet. 2013, 36, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Latash, M. Fundamentals of Motor Control; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wilkerson, G.B.; Colston, M.A.; Short, N.I.; Neal, K.L.; Hoewischer, P.E.; Pixley, J.J. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. J. Athl. Train. 2004, 39, 17–23. [Google Scholar]
- Silventoinen, K.; Kaprio, J.; Lahelma, E.; Koskenvuo, M. Relative effect of genetic and environmental factors on body height: Differences across birth cohorts among Finnish men and women. Am. J. Public Health 2000, 90, 627–630. [Google Scholar]
Variables | Mean | Minimum | Maximum | SD |
---|---|---|---|---|
Body height (cm) | 181.6 | 170.0 | 192.5 | 5.5 |
Body mass (kg) | 76.8 | 65.0 | 94.5 | 7.2 |
BMI (kg/m2) | 23.3 | 18.6 | 26.0 | 1.5 |
b-vs (cm) | 95.2 | 89.5 | 104.3 | 3.3 |
b-tro (cm) | 95.6 | 88.0 | 105.2 | 4.0 |
b-ti (cm) | 48.5 | 38.5 | 54.0 | 2.7 |
a-a (cm) | 41.8 | 38.0 | 46.5 | 1.8 |
ic-ic (cm) | 28.6 | 25.4 | 32.5 | 1.8 |
cl-cm (cm) | 7.1 | 6.4 | 7.8 | 0.3 |
epl-epm (cm) | 10.1 | 9.2 | 11.1 | 0.5 |
Chest girth (cm) | 88.4 | 80.0 | 100.0 | 4.9 |
Waist girth (cm) | 79.5 | 70.0 | 89.0 | 4.6 |
Relaxed biceps girth (cm) | 30.3 | 26.0 | 35.0 | 2.4 |
Flexed biceps girth (cm) | 33.4 | 29.5 | 37.5 | 2.3 |
Hip girth (cm) | 98.5 | 90.0 | 106.0 | 3.5 |
Thigh girth (cm) | 58.5 | 50.4 | 65.0 | 3.0 |
Calf girth (cm) | 37.9 | 33.2 | 41.0 | 1.8 |
Subscapular skinfold (mm) | 8.2 | 5.8 | 12.0 | 1.4 |
Triceps skinfold (mm) | 4.3 | 2.8 | 7.0 | 1.0 |
Suprailiac skinfold (mm) | 6.8 | 4.6 | 12.0 | 1.7 |
Abdominal skinfold (mm) | 7.0 | 4.0 | 12.0 | 2.2 |
Calf skinfold (mm) | 3.7 | 2.8 | 5.4 | 0.7 |
Right hand grip strength (kG) | 47.5 | 36.0 | 62.0 | 6.3 |
Left hand grip strength (kG) | 46.2 | 38.0 | 58.0 | 5.2 |
Back strength (kG) | 127.0 | 91.5 | 169.5 | 18.7 |
Te (Nm) | 416.8 | 252.7 | 596.7 | 86.4 |
Tf (Nm) | 191.7 | 106.0 | 294.4 | 46.3 |
H/Q ratio (%) | 46.1 | 32.1 | 61.0 | 6.5 |
(Te + Tf) / BM (Nm/kg) | 7.9 | 5.5 | 12.1 | 1.5 |
Variables | Group 1 (weaker) n = 14 | Group 2 (stronger) n = 23 | t | p |
---|---|---|---|---|
Body height (cm) | 180.5 ± 5.0 | 182.2 ± 5.8 | −0.95 | 0.349 |
Body mass (kg) | 72.8 ± 5.1 | 79.2 ± 7.3 | −2.91 | 0.006 * |
BMI (kg/m2) | 22.4 ± 1.5 | 23.8 ± 1.3 | −3.13 | 0.004 * |
b-vs (cm) | 94.7 ± 2.8 | 95.6 ± 3.5 | −0.86 | 0.395 |
b-tro (cm) | 95.6 ± 4.0 | 95.7 ± 4.0 | −0.06 | 0.951 |
b-ti (cm) | 48.4 ± 2.1 | 48.5 ± 3.1 | −0.07 | 0.945 |
a-a (cm) | 41.3 ± 1.8 | 42.1 ± 1.9 | −1.33 | 0.191 |
ic-ic (cm) | 28.4 ± 1.5 | 28.8 ± 2.0 | −0.77 | 0.447 |
cl-cm (cm) | 7.0 ± 0.3 | 7.2 ± 0.3 | −2.60 | 0.014 * |
epl-epm (cm) | 9.9 ± 0.3 | 10.2 ± 0.5 | −1.52 | 0.037 * |
Chest girth (cm) | 86.6 ± 5.2 | 89.6 ± 4.4 | −1.83 | 0.076 |
Waist girth (cm) | 78.0 ± 4.0 | 80.4 ± 4.9 | −1.55 | 0.131 |
Relaxed biceps girth (cm) | 29.8 ± 1.6 | 30.7 ± 2.7 | −1.15 | 0.260 |
Flexed biceps girth (cm) | 33.1 ± 1.8 | 33.6 ± 2.6 | −0.67 | 0.505 |
Hip girth (cm) | 97.3 ± 2.7 | 99.3 ± 3.8 | −1.74 | 0.091 |
Thigh girth (cm) | 57.1 ± 2.8 | 59.3 ± 2.8 | −2.29 | 0.028 * |
Calf girth (cm) | 36.9 ± 2.0 | 38.5 ± 1.4 | −2.83 | 0.008 * |
Subscapular skinfold (mm) | 7.5 ± 1.1 | 8.5 ± 1.5 | −2.15 | 0.039 * |
Triceps skinfold (mm) | 4.4 ± 1.3 | 4.2 ± 0.9 | 0.36 | 0.719 |
Suprailiac skinfold (mm) | 6.1 ± 1.1 | 7.2 ± 1.9 | −1.97 | 0.057 |
Abdominal skinfold (mm) | 6.4 ± 1.8 | 7.4 ± 2.3 | −1.29 | 0.206 |
Calf skinfold (mm) | 3.5 ± 0.5 | 3.9 ± 0.7 | −1.95 | 0.060 |
Right hand grip strength (kG) | 44.4 ± 5.5 | 49.4 ± 6.1 | −2.53 | 0.016 * |
Left hand grip strength (kG) | 43.6 ± 4.6 | 47.8 ± 4.9 | −2.56 | 0.015 * |
Back strength (kG) | 112.4 ± 11.9 | 135.9 ± 16.5 | −4.62 | 0.000 * |
Te (Nm) | 325.6 ± 37.2 | 472.2 ± 53.9 | −8.93 | 0.000 * |
Tf (Nm) | 152.3 ± 26.1 | 215.6 ± 39.0 | −5.37 | 0.000 * |
H/Q ratio | 47.0 ± 7.4 | 45.6 ± 6.0 | 0.61 | 0.546 |
(Te + Tf) / BM (Nm/kg) | 6.6 ± 1.3 | 8.7 ± 0.8 | −5.60 | 0.000 * |
Anthropometric Variables | Te | Tf | Anthropometric Variables | Te | Tf |
---|---|---|---|---|---|
Body height | 0.21 | 0.12 | Flexed biceps girth | 0.10 | 0.06 |
Body mass | 0.46 * | 0.34 * | Hip girth | 0.26 | 0.13 |
BMI | 0.45 * | 0.37 * | Thigh girth | 0.26 | 0.20 |
b-vs | 0.21 | 0.18 | Calf girth | 0.40 * | 0.31 |
b-tro | 0.14 | −0.01 | Subscapular skinfold | 0.34 * | 0.14 |
b-ti | 0.07 | −0.09 | Triceps skinfold | 0.12 | 0.12 |
a-a | 0.16 | −0.02 | Suprailiac skinfold | 0.36 * | 0.23 |
ic-ic | 0.16 | 0.05 | Abdominal skinfold | 0.19 | 0.14 |
cl-cm | 0.34 * | 0.21 | Calf skinfold | 0.38 * | 0.29 |
epl-epm | 0.43 * | 0.22 | Right handgrip strength | 0.33 * | 0.27 |
Chest girth | 0.31 | 0.13 | Left handgrip strength | 0.35 * | 0.26 |
Waist girth | 0.27 | 0.08 | Back strength | 0.56 * | 0.25 |
Relaxed biceps girth | 0.27 | 0.17 |
Independent Variables | Dependent Variable: Peak Torque Value of Knee Joint Extensors R = 0.62, R2 = 0.38, Adj. R2 = 0.30 F (4.32) = 4.86, p < 0.01 Standard Error of the Estimate: 72.3 | |||
---|---|---|---|---|
b | Standard Error of b | t | p | |
Intercept coefficient * | 1943.9 | 880.1 | 2.2 | 0.035 |
Body height * | −10.1 | 4.3 | −2.4 | 0.025 |
Thigh girth * | −25.4 | 9.4 | −2.7 | 0.011 |
Calf girth | 13.4 | 9.8 | 1.4 | 0.180 |
Body mass * | 16.7 | 5.1 | 3.3 | 0.003 |
Independent Variables | Dependent Variable: Peak Torque Value of Knee Joint Flexors R = 0.50, R2 = 0.25, Adj. R2 = 0.16, F (4.32) = 2.71, p < 0.05 Standard Error of the Estimate: 42.5 | |||
---|---|---|---|---|
b | Standard Error of b | t | p | |
Intercept coefficient | 1019.4 | 516.7 | 2.0 | 0.057 |
Body height * | −5.2 | 2.5 | −2.1 | 0.047 |
Thigh girth * | −11.9 | 5.5 | −2.2 | 0.038 |
Calf girth | 5.7 | 5.7 | 1.0 | 0.326 |
Body mass * | 7.8 | 3.0 | 2.6 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietraszewska, J.; Struzik, A.; Burdukiewicz, A.; Stachoń, A.; Pietraszewski, B. Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players. Appl. Sci. 2020, 10, 783. https://doi.org/10.3390/app10030783
Pietraszewska J, Struzik A, Burdukiewicz A, Stachoń A, Pietraszewski B. Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players. Applied Sciences. 2020; 10(3):783. https://doi.org/10.3390/app10030783
Chicago/Turabian StylePietraszewska, Jadwiga, Artur Struzik, Anna Burdukiewicz, Aleksandra Stachoń, and Bogdan Pietraszewski. 2020. "Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players" Applied Sciences 10, no. 3: 783. https://doi.org/10.3390/app10030783
APA StylePietraszewska, J., Struzik, A., Burdukiewicz, A., Stachoń, A., & Pietraszewski, B. (2020). Relationships between Body Build and Knee Joint Flexor and Extensor Torque of Polish First-Division Soccer Players. Applied Sciences, 10(3), 783. https://doi.org/10.3390/app10030783