Overall Performance Evaluation of Small Scale LNG Production Processes
Abstract
:1. Introduction
- the thermodynamic design and optimization (presented in Section 2) on a small-scale LNG production system, varying the values of the supply pressure, in order to identify the optimum layout and parameters (e.g., compressor pressure ratio, temperature and pressure in each plant section, etc.) that minimizes the total specific electric energy consumption (e);
- the development of a model (Section 3) which, based on the parameters obtained in the thermodynamic optimization, allows to develop the engineering design and dimensioning of each component of the plant. The obtained results (i.e., compressor volumetric efficiency and displacement, etc.) are used as starting point for the off-design analysis;
- the development of an off-design model (Section 3) that estimate the LNG system behavior when it is coupled with a renewable non programmable generator;
2. Thermodynamic Design and Optimization
2.1. Process Description
2.2. Thermodynamic Modeling
- (1)
- compressor C2-1 and inter-cooler C2 + compressor C2-2 and after-cooler C2;
- (2)
- compressor C2-1 and inter-cooler C2;
- (3)
- no secondary compressor line.
- -
- high pressure supply network, 70 bar (HPN),
- -
- medium-high pressure supply network, 30 bar (MHPN),
- -
- medium-low pressure supply network, 15 bar (MLPN),
- -
- low pressure supply network, 3 bar (LPN)
2.3. Performance Indicators
2.4. Hypothesis and Assumptions
2.5. Optimization Results
2.6. Discussion on the Proposed LNG Production Process
3. Engineering Design and off Design Performance Evaluation
- displacement of each compressor;
- design volumetric efficiency of each compressor;
- design isentropic efficiency of each compressor;
- design shaft power of each compressor;
- design NTU of each heat exchanger;
- total absorbed electrical power;
- design natural gas consumption.
3.1. Engineering Design Mathematical Model
3.2. Off-Design Calculation Model
4. Case Study: A LNG Refueling Station for Maritime Applications
4.1. LNG Production Plant Configuration and Assumptions
4.2. Wind and LNG Plants Integration
- -
- if, in the considered hour, the electrical production of the wind plant is lower than the lower operating limit of the LNG production process, then all the electric energy is introduced into the electric grid;
- -
- if, in the considered hour, the electrical production of the wind plant is within the operating range of the LNG plant, then all the electric energy is employed in the process;
- -
- if, in the considered hour, the electrical production of the wind plant is higher than the upper operating limit of the LNG production process, then the difference between the wind electric energy and the maximum electric load of the LNG plant is introduced into the electric grid.
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | |
specific heat in an isobaric process [kJ/kg∙K] | |
heat capacity [kW/K] | |
e | total specific electric energy consumption [kJ/kgLNG] |
EER | energy efficiency ratio [–] |
h | enthalpy [kJ/kg] |
mass flow rate [kg/s] | |
N | compressor speed [rpm] |
p | pressure [bar] |
P | electric power [kW] |
thermal power [kW] | |
S | surface [m2] |
T | temperature [ °C] or [K] |
U | global heat exchange coefficient [kW/m2K] |
v | specific volume [m3/kg] |
compressor displacement [m3] | |
volumetric flow rate [m3/s] | |
W | shaft power [kW] |
x | quality [–] |
Greek Symbols | |
difference [–] | |
ε | heat exchanger effectiveness [–] |
η | efficiency [–] |
ρ | density [kg/m3] |
Subscripts and Superscripts | |
amb | ambient |
c | cold |
des | design |
dis | discharge |
el | electric |
em | electro-mechanical |
ft | flash tank |
h | hot |
is | isentropic |
max | maximum |
min | minimum |
pol | polytropic |
stor | storage |
suc | suction |
sup | supply |
tot | total |
v | volumetric |
vap | vapour |
Acronyms | |
C1 | primary compression line |
C2 | secondary compression line |
HE | Heat Exchanger |
HPN | High Pressure Network |
JT | Joule-Thomson |
LNG | Liquefied Natural Gas |
LPN | Low Pressure Network |
MHPN | Medium High Pressure Network |
MLPN | Medium Low Pressure Network |
NG | Natural Gas |
NTU | Number Of Transfer Units |
TE | Turbo Expander |
VBA | Visual Basic for Application |
Appendix A
Parameter | Value | Units |
---|---|---|
0.779 | [–] | |
−0.036 | [–] | |
0.000 | [–] | |
1.140 | [–] | |
0.295 | [–] | |
447.050 | [kPa] | |
293.487 | [K] | |
34.940 | [K] | |
−24,202.367 | [K∙kPa] | |
2.786 | [W/K] | |
1.223 | [–] | |
−0.206 | [–] | |
−0.017 | [–] | |
0.507 | [–] | |
0.606 | [–] | |
−0.113 | [–] |
References
- International Energy Agency: 2017. World Energy Outlook; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/world-energy-outlook-2017.
- European Environment Agency. Greenhouse Gas Emissions from Transport: 2017; European Environment Agency: Copenhagen, Denmark, 2017; Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12.
- Schrooten, L.; De Vlieger, I.; Int Panis, L.; Chiffi, C.; Pastori, E. Emissions of maritime transport: A European reference system. Sci. Total Environ. 2009, 408, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, E.; Canepa, E.; Builtjes, P. Harbours and air quality. Atmos. Environ. 2007, 41, 6319–6321. [Google Scholar] [CrossRef]
- Chevron. Diesel Fuel Technical Review; Chevron: San Ramon, CA, USA, 2007; Available online: www.chevron.com/products/prodserv/fuels/bulletin/diesel.
- International Maritime Organization (IMO). Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)%E2%80%93-Regulation-14.aspx (accessed on 5 November 2019).
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Cho, J.H.; Lim, W.; Moon, I. Current status and future projections of LNG demand and supplies: A global prospective. Energy Policy 2011, 39, 4097–4104. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Taljegard, M.; Brynolf, S.; Grahn, M.; Andersson, K.; Johnson, H. Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model. Environ. Sci. Technol. 2014, 48, 12986–12993. [Google Scholar] [CrossRef] [PubMed]
- Livanos, G.A.; Theotokatos, G.; Pagonis, D.-N. Techno-economic investigation of alternative propulsion plants for Ferries and RoRo ships. Energy Convers. Manag. 2014, 79, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.-Y.; Fischer, B. Natural Gas Liquefaction Processes Comparison. In Proceedings of the 14th International Conference and Exhibition on Liquefied Natural Gas (LNG-14), Doha, Qatar, 21–24 March 2004. [Google Scholar]
- Bosma, P.; Nagelvoort, R.K. Liquefaction Technology; Developments through History. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009. [Google Scholar]
- Van de Graaf, J.M.; Pek, B. Large-Capacity LNG Trains—The Shell Parallel Mixed Refrigerant Process. Business Briefing, 28 October 2005. [Google Scholar]
- Berger, E.; Forg, W.; Heiersted, R.S.; Paurola, P. The MFC® (Mixed Fluid Cascade) Process for the First European Baseload LNG Production Plant. Linde, 13 July 2003. [Google Scholar]
- Waldmann, I.B. Evaluation of Process Systems for Floating LNG Production Units. In Proceedings of the Tekna Conference, Stavanger, Norway, 18–19 June 2008. [Google Scholar]
- Foglietta, J.H. Production of LNG using Dual Independent Expander Refrigeration Cycles. In Proceedings of the AIChE Spring National Meeting, New Orleans, LA, USA, 10–14 March 2002. [Google Scholar]
- Ancona, M.A.; Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Scarponi, L.B.; Mormile, M.; Palella, M. Investigation on Small-scale Low Pressure LNG Production Process. Appl. Energy 2018, 227, 672–685. [Google Scholar] [CrossRef]
- Lim, W.; Choi, K.; Moon, I. Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design. Ind. Eng. Chem. Res. 2013, 52, 3065–3088. [Google Scholar] [CrossRef]
- He, T.; Karimi, I.A.; Ju, Y. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chem. Eng. Res. Des. 2018, 132, 89–114. [Google Scholar] [CrossRef]
- He, T.; Liu, Z.; Ju, Y.; Parvez, A.M. A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy 2019, 167, 1–12. [Google Scholar] [CrossRef]
- Kohler, T.; Bruentrup, M.; Key, R.D.; Edvardsson, T. Choose the best refrigeration technology for small-scale LNG production. Hydrocarb. Process 2014, 1, 45–52. [Google Scholar]
- Kim, J.; Seo, Y.; Chang, D. Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction. Appl. Energy 2016, 182, 154–163. [Google Scholar] [CrossRef]
- Ancona, M.A.; Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Mormile, M.; Palella, M. On-Site LNG Production at Filling Stations. Appl. Therm. Eng. 2018, 137, 142–153. [Google Scholar] [CrossRef]
- Ancona, M.A.; Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Mormile, M.; Palella, M. A Novel Small Scale Liquefied Natural Gas Production Process at Filling Stations: Thermodynamic Analysis and Parametric Investigation. In Proceedings of the ASME Turbo Expo 2016, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Available online: http://www.snamretegas.it/it/business-servizi/Archivio/Anno-termico_2015_2016/Info-agli-utenti/1_rete-naz-gasd.html (accessed on 5 November 2019).
- He, T.; Ju, Y. Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant. Energy 2015, 88, 268–280. [Google Scholar] [CrossRef]
- Remeljej, C.W.; Hoadley, A.F.A. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. Energy 2006, 31, 2005–2019. [Google Scholar] [CrossRef]
- Li, W. Simplified steady-state modeling for variable speed compressor. Appl. Therm. Eng. 2013, 50, 318–326. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N. Performance prediction of a reciprocating piston expander with semi-empirical models. In Proceedings of the 10th International Conference on Applied Energy (ICAE2018), Hong Kong, China, 22–25 August 2018. [Google Scholar]
- Darr, J.H. Modeling of an Automotive Air Conditioning Compressor Based on Experimental Data. Ph.D. Thesis, Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA, February 1992. [Google Scholar]
- Ancona, M.A.; Bianchi, M.; Branchini, L.; Brilloni, A.; Catena, F.; De Pascale, A.; Melino, F.; Peretto, A.; Liverani, A.; Palella, M. Parametric Analysis on Small Scale System for Liquefied Natural Gas production. In Proceedings of the 13th Conference on Sustainable Development of Energy, Water and Environment Systems, Palermo, Italy, 30 September–4 October 2018. [Google Scholar]
- Available online: https://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni/datistatistici.aspx (accessed on 5 November 2019).
Parameters | Units | Values |
---|---|---|
T1 | [°C] | 20 |
ṁLNG | [kg/s] | 1 |
ηpol (each compressor) | [–] | 0.63 |
ηem (each compressor) | [–] | 0.90 |
ηis (TE) | [–] | 0.70 |
Reg. HE effectiveness (ε) | [–] | 0.70 |
Chiller EER | [–] | 1.1 |
Pressure losses (each HE) | [%] | 2 |
T8 | [°C] | −50 |
Tout intercooler/aftercooler | [°C] | 30 |
psup (p1) | pmax (p6) | pstor (p10) | xft | Total Specific Electric Energy Consumption (e) | ||
---|---|---|---|---|---|---|
Configuration | [bar] | [bar] | [bar] | [–] | [kJ/kgLNG] | |
Scenario HPN | JT-HPN | 70 | 175 | 15 | 0.53 | 1489 |
TE-HPN | 200 | 15 | 0.41 | 1092 (−27%) | ||
Scenario MHPN | JT-MHPN | 30 | 150 | 15 | 0.55 | 1772 |
TE-MHPN | 170 | 15 | 0.43 | 1377 (−22%) | ||
Scenario MLPN | JT-MLPN | 15 | 150 | 15.6 | 0.55 | 1991 |
TE-MLPN | 160 | 15.6 | 0.44 | 1612 (−19%) | ||
Scenario LPN | JT-LPN | 3 | 175 | 15 | 0.51 | 3263 |
TE-LPN | 200 | 15 | 0.40 | 2683 (−18%) |
Parameter | Value |
---|---|
NG composition | 100% CH4 |
T1 | 20 °C |
p1 | 3 bar |
T2 | −5 °C |
p2 | 3 bar |
p3 | 25 bar |
p5 | 175 bar |
EER chiller | 1.1 |
T8 | −50 °C |
p11 | 15 bar |
T4 | 30 °C |
T6 | 30 °C |
Tamb | 15 °C |
Parameter | Value |
---|---|
Pel,C1 | 17.81 kW |
Pel,C2 | 19.51 kW |
Pchiller | 6.02 kW |
Pel,tot | 43.34 kW |
0.013 kg/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancona, M.A.; Bianchi, M.; Branchini, L.; Catena, F.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A. Overall Performance Evaluation of Small Scale LNG Production Processes. Appl. Sci. 2020, 10, 785. https://doi.org/10.3390/app10030785
Ancona MA, Bianchi M, Branchini L, Catena F, De Pascale A, Melino F, Ottaviano S, Peretto A. Overall Performance Evaluation of Small Scale LNG Production Processes. Applied Sciences. 2020; 10(3):785. https://doi.org/10.3390/app10030785
Chicago/Turabian StyleAncona, Maria Alessandra, Michele Bianchi, Lisa Branchini, Francesco Catena, Andrea De Pascale, Francesco Melino, Saverio Ottaviano, and Antonio Peretto. 2020. "Overall Performance Evaluation of Small Scale LNG Production Processes" Applied Sciences 10, no. 3: 785. https://doi.org/10.3390/app10030785
APA StyleAncona, M. A., Bianchi, M., Branchini, L., Catena, F., De Pascale, A., Melino, F., Ottaviano, S., & Peretto, A. (2020). Overall Performance Evaluation of Small Scale LNG Production Processes. Applied Sciences, 10(3), 785. https://doi.org/10.3390/app10030785