Application of Contemporary Extraction Techniques for Elements and Minerals Recovery from Stinging Nettle Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Sample Preparation for Elemental Analysis
2.4. Elemental Analysis
2.5. Validation Study
2.6. Statistical Analysis
3. Results and Discussion
3.1. Validation of Analysis
3.2. Elemental Profile of SN Extracts
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Element | Additional Concentration (mg/L) | |
---|---|---|
Spiking Level S1 | Spiking Level S2 | |
Pb | 0.05 | 0.20 |
Cd | 0.01 | 0.10 |
As | 0.05 | 0.20 |
Cu | 0.02 | 0.20 |
Fe | 0.10 | 0.40 |
Zn | 0.05 | 0.20 |
Mn | 0.01 | 0.10 |
Ni | 0.02 | 0.20 |
Cr | 0.01 | 0.10 |
K | 5.00 | 20.00 |
Na | 5.00 | 20.00 |
Ca | 5.00 | 20.00 |
Mg | 5.00 | 20.00 |
References
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Đurović, S.; Zeković, Z.; Šorgić, S.; Popov, S.; Vujanović, M.; Radojković, M. Fatty acid profile of stinging nettle leaves: Application of modern analytical procedures for sample preparation and analysis. Anal. Methods 2018, 10, 1080–1087. [Google Scholar] [CrossRef]
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Pertonijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Gül, S.; Demirci, B.; Başer, K.H.C.; Akpulat, H.A.; Aksu, P. Chemical Composition and In Vitro Cytotoxic, Genotoxic Effects of Essential Oil from Urtica dioica L. Bull. Environ. Contam. Toxicol. 2012, 88, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Kukric, Z.; Topalic-Trivunovic, L.; Kukavica, B.; Matos, S.; Pavicic, S.; Boroja, M.; Savic, A. Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L.). Acta Period. Technol. 2012, 43, 257–272. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Isasa, M.E.T. Fatty acids and carotenoids from stinging nettle (Urtica dioica L.). J. Food Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Đurović, S.; Šorgić, S.; Popov, S.; Radojković, M.; Zeković, Z. Isolation and GC Analysis of Fatty Acids: Study Case of Stinging Nettle Leaves. In Carboxylic Acid—Key Role in Life Sciences; Badea, G.I., Radu, G.L., Eds.; InTech: London, UK, 2018; pp. 69–83. [Google Scholar]
- Bağci, E. Fatty Acid Composition of the Aerial Parts of Urtica Dioica (Stinging Nettle) L. (Urticaceae). In Biodiversity; Şener, B., Ed.; Springer: Boston, MA, USA, 2002; pp. 323–327. [Google Scholar]
- Pinelli, P.; Ieri, F.; Vignolini, P.; Bacci, L.; Baronti, S.; Romani, A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J. Agric. Food Chem. 2008, 56, 9127–9132. [Google Scholar] [CrossRef] [PubMed]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeković, Z.; Cvetanović, A.; Švarc-Gajić, J.; Gorjanović, S.; Sužnjević, D.; Mašković, P.; Savić, S.; Radojković, M.; Đurović, S. Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Ind. Crops Prod. 2017, 108, 423–430. [Google Scholar] [CrossRef]
- Sajfrtová, M.; Sovová, H.; Opletal, L.; Bártlová, M. Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots. J. Supercrit. Fluids 2005, 35, 111–118. [Google Scholar] [CrossRef]
- Tack, F.; Verloo, M. Metal contents in stinging nettle (Urtica dioica L.) as affected by soil characteristics. Sci. Total Environ. 1996, 192, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Kara, D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem. 2009, 114, 347–354. [Google Scholar] [CrossRef]
- Johnson, T.A.; Sohn, J.; Inman, W.D.; Bjeldanes, L.F.; Rayburn, K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine 2013, 20, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülçin, İ.; Küfrevioǧlu, Ö.İ.; Oktay, M.; Büyükokuroǧlu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ghaima, K.K.; Hashim, N.M.; Ali, S.A. Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). J. Appl. Pharm. Sci. 2013, 3, 96–99. [Google Scholar]
- Mediterranean Wild Edible Plants; Sánchez-Mata, M.d.C.; Tardío, J. (Eds.) Springer: New York, NY, USA, 2016; ISBN 978-1-4939-3327-3. [Google Scholar]
- Mašković, P.Z.; Veličković, V.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Mitić, M.; Vujić, J. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches. Phytomedicine 2018, 38, 118–124. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; US EPA: Cincinnati, OH, USA, 1994.
- USDA—NAL. Dietary Reference Intakes (DRIs): Estimated Average Requirements. Available online: http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/dri-tables (accessed on 25 November 2018).
- Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its by-products. Appl. Ecol. Environ. Res. 2005, 3, 1–18. [Google Scholar] [CrossRef]
- Greger, M. Metal Availability and Bioconcentration in Plants. In Heavy Metal Stress in Plants: From Molecules to Ecosystems; Prasad, M.N.V., Hagemeyer, J., Eds.; Springer: New York, NY, USA, 1999; pp. 1–27. [Google Scholar]
- Goletić, Š.; Bukalo, E.; Trako, E. Monitoring the Content of Heavy Metals in Soil and Plants in Environment in Ironworks Zenica. In Proceedings of the 7th Reasrch/Expert Conference with International Participation Quality, Vienna, Austria, 20–21 September 2011; pp. 1–4. [Google Scholar]
Element | Linearity | Concentration Range (mg/L) | Calibration Curve | IDL (µg/L) | MDL (µg/L) |
---|---|---|---|---|---|
Pb | 0.9988 | 0.00–1.00 | Y = 1164.63x + 9.2436 | 5.8 | 7.0 |
Cd | 0.9993 | 0.00–1.00 | Y = 12733.45x + 40.6606 | 0.8 | 1.0 |
As | 0.9994 | 0.00–1.00 | Y = 557.79x + 4.3289 | 4.8 | 5.0 |
Cu | 0.9998 | 0.00–1.00 | Y = 34203.24x + 77.3832 | 0.7 | 1.0 |
Fe | 0.9987 | 0.00–1.00 | Y = 20583.09x + 120.7146 | 2.5 | 3.0 |
Zn | 0.9992 | 0.00–1.00 | Y = 27447.81x + 92.4606 | 1.3 | 2.0 |
Mn | 0.9992 | 0.00–1.00 | Y = 194570.53x + 733.9341 | 1.1 | 2.0 |
Ni | 0.9983 | 0.00–1.00 | Y = 4195.05x + 24.0310 | 2.2 | 3.0 |
Cr | 0.9986 | 0.00–1.00 | Y = 21768.49x + 63.1770 | 0.8 | 1.0 |
K | 0.9970 | 0.00–10.00 | Y = 1251.7994x + 240.4287 | 99.9 | 100.0 |
Na | 0.9994 | 0.00–10.00 | Y = 7787.27x + 456.4494 | 30.0 | 30.0 |
Ca | 0.9969 | 0.00–6.00 | Y = 4675.28x + 463240.0555 | 15.5 | 30.0 |
Mg | 0.9977 | 0.00–7.00 | Y = 362638.66x + 37444.2176 | 9.0 | 20.0 |
Element | Accuracy * (%) | Precision * (RSD, %) | Intra-Day Precision * (%) | Inter-Day Precision * (%) |
---|---|---|---|---|
Pb | S1 (92–106) | S1 3.50 | S1 3.15 | S1 3.46 |
S2 (93–102) | S2 2.90 | S2 2.78 | S2 2.76 | |
Cd | S1 (94–112) | S1 5.80 | S1 5.74 | S1 5.56 |
S2 (94–102) | S2 2.80 | S2 2.79 | S2 2.66 | |
As | S1 (100–114) | S1 4.70 | S1 4.48 | S1 4.54 |
S2 (96–105) | S2 2.10 | S2 3.09 | S2 3.10 | |
Cu | S1 (87–98) | S1 3.70 | S1 3.71 | S1 3.59 |
S2 (99–109) | S2 3.40 | S2 3.37 | S2 3.24 | |
Fe | S1 (93–104) | S1 3.30 | S1 3.36 | S1 3.31 |
S2 (92–104) | S2 3.70 | S2 3.63 | S2 3.57 | |
Zn | S1 (88–104) | S1 5.90 | S1 5.81 | S1 5.61 |
S2 (93–106) | S2 4.00 | S2 3.98 | S2 3.84 | |
Mn | S1 (90–110) | S1 5.90 | S1 5.90 | S1 5.87 |
S2 (94–104) | S2 2.50 | S2 2.37 | S2 2.46 | |
Ni | S1 (80–90) | S1 4.60 | S1 4.69 | S1 4.50 |
S2 (92–106) | S2 6.50 | S2 6.51 | S2 6.21 | |
Cr | S1 (87–93) | S1 1.90 | S1 1.90 | S1 1.89 |
S2 (96–101) | S2 1.80 | S2 1.78 | S2 1.70 | |
K | S1 (99–106) | S1 2.60 | S1 2.53 | S1 2.49 |
S2 (97–104) | S2 2.20 | S2 2.25 | S2 2.15 | |
Na | S1 (103–108) | S1 1.80 | S1 1.80 | S1 1.75 |
S2 (102–109) | S2 1.80 | S2 1.58 | S2 1.78 | |
Ca | S1 (94-109) | S1 3.80 | S1 3.84 | S1 3.79 |
S2 (91–103) | S2 3.00 | S2 2.76 | S2 2.94 | |
Mg | S1 (90–101) | S1 3.50 | S1 3.49 | S1 3.35 |
S2 (93–104) | S2 4.10 | S2 4.14 | S2 3.99 |
Element | Sample | ANOVA | ||||
---|---|---|---|---|---|---|
SE | MAC | UAE | MAE | |||
Content (mg/L) | ||||||
Macroelement | p | |||||
Na | 60.84 ± 1.59 b | 90.37 ± 0.47 a | 56.60 ± 0.09 c | 46.96 ± 0.72 d | <0.0001 | |
K | 285.51 ± 2.06 d | 405.19 ± 0.64 c | 880.39 ± 3.39 b | 965.60 ± 7.70 a | <0.0001 | |
Mg | 12.33 ± 1.19 d | 104.43 ± 0.19 c | 162.08 ± 0.52 b | 191.99 ± 2.60 a | <0.0001 | |
Ca | 29.64 ± 1.37 d | 464.24 ± 0.24 a | 288.88 ± 0.84 c | 428.23 ± 1.93 b | <0.0001 | |
Microelement | ||||||
Fe | 3.53 ± 0.06 b | 4.19 ± 0.93 b | 8.24 ± 0.16 a | 6.87 ± 0.02 a | <0.0001 | |
Cu | 3.16 ± 0.13 a | 3.36 ± 0.99 a | 2.08 ± 0.01 a | 1.67 ± 0.01 a | 0.0083 | |
Mn | 0.11 ± 0.04 c | 0.27 ± 0.05 b | 0.35 ± 0.01 b | 0.55 ± 0.01 a | <0.0001 | |
Zn | 0.61 ± 0.09 d | 1.15 ± 0.03 c | 2.05 ± 0.04 a | 1.61 ± 0.04 b | <0.0001 | |
Cr | 0.20 ± 0.01 a | 0.22 ± 0.03 a | 0.01 ± 0.00 b | 0.01 ± 0.00 b | <0.0001 | |
Sn | 1.37 ± 0.83 a | 1.67 ± 0.05 a | 0.53 ± 0.02 a | 0.58 ± 0.01 a | 0.0224 | |
Ni | ND * | ND | 0.06 ± 0.01 a | 0.07 ± 0.02 a | 0.4818 | |
Toxic element | ||||||
Pb | 1.36 ± 0.59 a | 0.92 ± 0.07 a | 1.13 ± 0.06 a | 0.30 ± 0.05 a | 0.0129 | |
Cd | 0.01 ± 0.00 | ND | 0.01 ± 0.00 | ND | - | |
Hg | ND | ND | ND | ND | - | |
As | 3.64 ± 0.82 | ND | ND | ND | - |
Element | Factor Loading | |
---|---|---|
PC1 | PC2 | |
Na | −0.5924 | −0.6781 |
K | 0.9952 * | 0.0976 |
Mg | 0.9646 | −0.2450 |
Ca | 0.5623 | −0.8158 |
Fe | 0.9139 | 0.2531 |
Cu | −0.9450 | −0.2677 |
Mn | 0.9375 | −0.2706 |
Zn | 0.8920 | 0.0429 |
Cr | −0.9438 | −0.3303 |
Sn | −0.8851 | −0.4650 |
Ni | 0.9728 | 0.2243 |
Pb | −0.7196 | 0.4985 |
Cd | −0.2665 | 0.9025 |
As | −0.7413 | 0.5597 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, S.; Skeledžija, S.; Šorgić, S.; Zeković, Z.; Micić, D.; Radulović, A.; Đurović, S. Application of Contemporary Extraction Techniques for Elements and Minerals Recovery from Stinging Nettle Leaves. Appl. Sci. 2020, 10, 793. https://doi.org/10.3390/app10030793
Popov S, Skeledžija S, Šorgić S, Zeković Z, Micić D, Radulović A, Đurović S. Application of Contemporary Extraction Techniques for Elements and Minerals Recovery from Stinging Nettle Leaves. Applied Sciences. 2020; 10(3):793. https://doi.org/10.3390/app10030793
Chicago/Turabian StylePopov, Saša, Suzana Skeledžija, Saša Šorgić, Zoran Zeković, Darko Micić, Aleksandra Radulović, and Saša Đurović. 2020. "Application of Contemporary Extraction Techniques for Elements and Minerals Recovery from Stinging Nettle Leaves" Applied Sciences 10, no. 3: 793. https://doi.org/10.3390/app10030793
APA StylePopov, S., Skeledžija, S., Šorgić, S., Zeković, Z., Micić, D., Radulović, A., & Đurović, S. (2020). Application of Contemporary Extraction Techniques for Elements and Minerals Recovery from Stinging Nettle Leaves. Applied Sciences, 10(3), 793. https://doi.org/10.3390/app10030793