Semantic Publication of Agricultural Scientific Literature Using Property Graphs
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. RDF Generation
- Bibliographic Ontology (bibo) to represent bibliographic data such as author lists, literature identifiers, cites, references or abstracts;
- Dublin Core Terms (dcterms) [11], to describe predicates like hasPart, title or publisher;
- Friend Of A Friend Ontology (foaf), to represent information about authors;
- Provenance Ontology (prov) [22], using the predicate generatedAtTime in order to save the date in which the RDF was generated;
- Wikidata [23], to store the authors ORCID’s, which was retrieved from ORCID search web service endpoint (https://pub.orcid.org/v2.0/search) from article DOI, author given name, and author family name, when possible;
- Semanticscience Integrated Ontology (sio) [24], to relate an article to a PMC RDF dataset through the predicate is_data_item_in.
3.2. Annotation
3.3. Knowledge Graph Population
- A property graph is made up of nodes, relationships and properties.
- Nodes contain properties [...] in the form of arbitrary key-value pairs. The keys are strings and the values are arbitrary data types.
- A relationship always has a direction, a label, and a start node and an end node.
- Like nodes, relationships can also have properties.
- Rule 1:
- Every RDF resource becomes a property graph node. Since the subject in RDF is always a resource, there is at least one property graph node created or merged into an existing node.
- Rule 2:
- If the object is a literal, the predicate and object become respectively a property name and value. The property is added to the created or existing node corresponding to the resource.
- Rule 3:
- If the object is a resource, then both the subject and objects are transformed into a node. A relationship between them is created and it holds the predicate’s name as a relationship type.
- Rule 4:
- If the predicate is rdf:type, the subject becomes a node having a label set to the objects name (which is actually the resource type).
- Named class (category) declarations with both rdfs:Class and owl:Class. The nodes representing named classes are labelled as Class.
- Explicit class hierarchies defined with rdf:subClassOf statements. The edges representing rdf:subClassOf relations are labelled as subClassOf.
- Property definitions with owl:ObjectProperty, owl:DatatypeProperty and rdfs:Property, whose corresponding nodes have been labelled as Relation, Property and Property, respectively.
- Explicit property hierarchies defined with rdfs:subPropertyOf statements. The edges representing this relation were labelled as subPropertyOf.
- Domain and range information for properties described as rdfs:domain and rdfs:range statements, whose corresponding edges in the graph were labelled as domain and range.
4. Results
4.1. Description of the Experiment
4.2. The Knowledge Graph
4.2.1. Basic Metrics of the Graph
4.2.2. Analysis of the Annotations Set
4.3. Use Case 1: Similarity between Articles
4.4. Use Case 2: Annotations in the Same Context
In this expression, Nur indicates the total number of plant species used to extract a certain color and Nt refers to the number of species simultaneously approved by all informants for dyeing a certain color. ICF values range between 0 and 1, with 0 indicating the highest level of informant consent and 1 the lowest. To quantify the use frequency of certain species [[CR22]], the below formula was adopted.
5. Discussion
5.1. Progress beyond the State-of-the-Art
5.2. New Possibilities for Literature Management
5.3. Property Graphs for RDF Representation
5.4. Limitations and Further Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Articles in the Data Set
PMC3310815 |
PMC3547067 |
PMC3668195 |
PMC3672096 |
PMC3676804 |
PMC3676838 |
PMC3818224 |
PMC3904951 |
PMC3951315 |
PMC4067337 |
PMC4112640 |
PMC4128675 |
PMC4171492 |
PMC4237146 |
PMC4378629 |
PMC4379157 |
PMC4392563 |
PMC4397498 |
PMC4421779 |
PMC4427476 |
PMC4449599 |
PMC4501783 |
PMC4520592 |
PMC4581289 |
PMC4598160 |
PMC4623198 |
PMC4720047 |
PMC4824577 |
PMC4844397 |
PMC4867051 |
PMC4879578 |
PMC4898372 |
PMC4913302 |
PMC4932627 |
PMC4981420 |
PMC4998141 |
PMC5011652 |
PMC5052518 |
PMC5055509 |
PMC5066492 |
PMC5095167 |
PMC5125658 |
PMC5253511 |
PMC5299730 |
PMC5313494 |
PMC5324297 |
PMC5362684 |
PMC5373544 |
PMC5413563 |
PMC5441857 |
PMC5447229 |
PMC5465592 |
PMC5472609 |
PMC5521873 |
PMC5559270 |
PMC5579920 |
PMC5620588 |
PMC5633626 |
PMC5637878 |
PMC5669304 |
PMC5688476 |
PMC5738964 |
PMC5755014 |
PMC5758783 |
PMC5762720 |
PMC5763371 |
PMC5800158 |
PMC5853279 |
PMC5860692 |
PMC5882813 |
PMC5908804 |
PMC5935394 |
PMC5995558 |
PMC6013986 |
PMC6021986 |
PMC6055696 |
PMC6066661 |
PMC6070203 |
PMC6084956 |
PMC6166800 |
PMC6191707 |
PMC6198449 |
PMC6213855 |
PMC6215673 |
PMC6232530 |
PMC6242374 |
PMC6262949 |
PMC6277847 |
PMC6322579 |
PMC6326430 |
PMC6337918 |
PMC6358044 |
PMC6366173 |
PMC6376693 |
PMC6390929 |
PMC6390932 |
PMC6394436 |
PMC6399567 |
PMC6404675 |
PMC6412671 |
PMC6417397 |
PMC6417402 |
PMC6449481 |
PMC6471123 |
PMC6471620 |
PMC6472519 |
PMC6473438 |
PMC6514985 |
PMC6524069 |
PMC6524378 |
PMC6529577 |
PMC6538708 |
PMC6539879 |
PMC6539957 |
PMC6560427 |
PMC6570029 |
PMC6571617 |
PMC6587683 |
PMC6630288 |
PMC6630593 |
PMC6630798 |
PMC6681330 |
PMC6681344 |
PMC6681968 |
PMC6724085 |
PMC6730492 |
PMC6736833 |
Appendix B. Cypher Queries
- MATCH (a)
- WITH count(a) as nodes
- MATCH ()-[r]->()
- WITH nodes, count(r) as edges
- RETURN nodes, edges
- MATCH (article:bibo__AcademicArticle) -[:bibo__authorList]->
- (authorList:rdf__Seq) --> (author:foaf__Person)
- RETURN article.dct__title, count(author) as authors
- ORDER BY authors desc
- MATCH (article:bibo__AcademicArticle) -[:bibo__authorList]->
- (authorList:rdf__Seq) --> (author:foaf__Person)
- WITH article.dct__title as title, count(author) as authors
- RETURN avg(authors)
- MATCH (author:foaf__Person) -[:foaf__publications]-> (article)
- RETURN author.foaf__name, count(article) as articles
- ORDER BY articles desc
- MATCH (author:foaf__Person) -[:foaf__publications]-> (article)
- WITH author.foaf__name as authorName, count(article) as articles
- RETURN avg(articles)
- MATCH (article:bibo__AcademicArticle) -[:bibo__cites]-> (reference)
- RETURN article.dct__title, count(reference) as references
- ORDER BY references desc
- MATCH (article:bibo__AcademicArticle) -[:bibo__cites]-> (reference)
- WITH article.dct__title as title, count(reference) as references
- RETURN avg(references)
- MATCH(reference)-[:bibo__citedBy]->(article:bibo__AcademicArticle)
- RETURN reference.uri as reference, count(article) as articles
- ORDER BY articles desc
- MATCH(reference) -[:bibo__citedBy]-> (article:bibo__AcademicArticle)
- WITH reference, count(article) as articles
- RETURN avg(articles)
- MATCH (article:bibo__AcademicArticle) -[:dct__isPartOf]->
- (issue:bibo__Issue)-[:dct__isPartOf]->(journal:bibo__Journal)
- RETURN journal.dct__title, count(article) as articles
- ORDER BY articles desc
- MATCH (article:bibo__AcademicArticle)-[:dct__isPartOf]->
- (issue:bibo__Issue)-[:dct__isPartOf]->
- (journal:bibo__Journal)-[:dct__publisher]->
- (publisher:foaf__Organization)
- RETURN publisher.foaf__name, count(distinct article) as articles
- ORDER BY articles desc
- MATCH (annotation:aot__ExactQualifier)
- WHERE annotation.aoc__body <> ’UNAVAILABLE’
- RETURN sum(annotation.biotea__tf)
- MATCH (annotation:aot__ExactQualifier) -[:aoc__annotatesResource]->
- (article:bibo__AcademicArticle)
- WHERE annotation.aoc__body <> ’UNAVAILABLE’
- RETURN annotation.aoc__body,
- sum(annotation.biotea__tf) as `annotation count`,
- count(article) as articles
- ORDER BY `annotation count` desc limit 10
- MATCH (annotation:aot__ExactQualifier) -[:aoc__annotatesResource]->
- (article:bibo__AcademicArticle)
- WITH annotation.aoc__body as text,
- sum(annotation.biotea__tf) as `annotation count`,
- count(article) as `article count`
- WHERE `annotation count` = 1
- RETURN text, `annotation count`, `article count`
- MATCH (annotation:aot__ExactQualifier)
- WITH annotation.aoc__body as text,
- sum(annotation.biotea__tf) as `annotation count`
- WHERE `annotation count` = 1
- RETURN count(text)
- MATCH (topic:Class)<-[:aoc__hasTopic]-(annotation:aot__ExactQualifier)
- WHERE annotation.aoc__body in [’PLANTS’, ’PLANT’, ’STRESS’, ’SOIL’, ’RICE’,
- ’EXPRESSION’,’GROWTH’,’OTHER’,’STUDY’,’GENES’,
- ’1-METHYLCYCLOPROPENE’, ’1-PROPANOL’, ’ABA RESPONSE’,
- ’ABSCISIC ACID METABOLISM’, ’ACETYLATION’,’ACR2’,
- ’BOTANICAL GARDEN’,’BREAST ADENOCARCINOMA’,’CHAPERONIN’,
- ’SESAME OIL’]
- WITH topic, annotation
- MATCH (root:Class) where not (root)-[:subClassOf]->()
- WITH topic, root, annotation
- MATCH path = (topic)-[:subClassOf*]->(root)
- WITH length(path) as pathLength,
- topic,
- annotation
- WITH annotation.aoc__body as text,
- topic.uri as topicUri,
- min(pathLength) + 1 as depth
- RETURN text,
- count(topicUri) as annotatedClasses,
- avg(depth) as averageDepth
- MATCH (annotation:aot__ExactQualifier)-[:aoc__hasTopic]->(concept:Class)
- WHERE annotation.aoc__body <> ’UNAVAILABLE’
- WITH distinct concept.uri as concept
- WITH URIManager.getNamespace(concept) as ontologyPrefix,
- count(concept) as usedElements
- MATCH (element:Class)
- WHERE element.uri STARTS WITH ontologyPrefix
- WITH ontologyPrefix,
- usedElements,
- count (distinct element.uri) as totalElements
- RETURN ontologyPrefix,
- usedElements,
- totalElements,
- (100.0*usedElements)/totalElements as percentage
- ORDER BY totalElements desc
- MATCH (polymerTopic:Class)<-[:subClassOf*]-(subTopics:Class)
- WHERE polymerTopic.uri =’http://opendata.inra.fr/PO2_DG/product/polymers’
- WITH COLLECT(polymerTopic) + COLLECT(subTopics) as topicList
- UNWIND topicList as topics
- MATCH (article:bibo__AcademicArticle)<-
- [:aoc__annotatesResource]-
- (annotation:aot__ExactQualifier)-
- [:aoc__hasTopic]->(topics)
- RETURN article.dct__title, annotation.aoc__body
- MATCH (topic:Resource)<-[:aoc__hasTopic]-
- (annotation:aot__ExactQualifier)-[:aoc__annotatesResource]->
- (article:bibo__AcademicArticle)
- WHERE annotation.aoc__body <> ’UNAVAILABLE’
- WITH {item:id(article),
- categories: collect(distinct id(topic))} as userData
- WITH collect(userData) as data
- CALL algo.similarity.overlap.stream(data)
- YIELD item1, item2, count1, count2, intersection, similarity
- RETURN algo.asNode(item1).dct__title AS from,
- algo.asNode(item2).dct__title AS to,
- count1, count2, intersection, similarity
- ORDER BY similarity DESC
- MATCH (annotation:aot__ExactQualifier{aoc__body:"SIGMA FACTORS"})
- -[:aoc__context]->(context:biotea__ElementSelector)
- -[:dct__references]->(paragraph:doco__Paragraph)
- WITH paragraph
- MATCH (otherAnnotations:aot__ExactQualifier)-[:aoc__context]->
- (context:biotea__ElementSelector)
- -[:dct__references]->(paragraph)-[:dct__isPartOf*]->
- (article:bibo__AcademicArticle)
- RETURN article.bibo__pmid as pmid,
- paragraph.rdf__value as paragraph,
- collect(distinct otherAnnotations.aoc__body) as annotations
- MATCH(annotation:aot__ExactQualifier{aoc__body:"SIGMA FACTORS"})
- -[:aoc__context]->(context:biotea__ElementSelector)
- -[:dct__references]->(paragraph:doco__Paragraph)
- WITH paragraph
- MATCH (otherAnnotations:aot__ExactQualifier)-[:aoc__context]->
- (context:biotea__ElementSelector)-[:dct__references]->
- (paragraph)
- WITH paragraph.rdf__value as paragraphText,
- collect(distinct otherAnnotations.aoc__body) as annotationsPerParagraph
- WITH collect(annotationsPerParagraph) as annotations
- WITH reduce(commonAnnotations = head(annotations),
- annotation in tail(annotations) |
- apoc.coll.intersection(commonAnnotations, annotation)) as commonAnnotations
- RETURN commonAnnotations
- MATCH (annotations:aot__ExactQualifier)-[:aoc__context]->
- (context:biotea__ElementSelector)-[:dct__references]->
- (paragraph:doco__Paragraph)
- RETURN paragraph.rdf__value as text,
- COLLECT(annotations.aoc__body) as annotations
References
- Frazzetto, G. The changing identity of the scientist: As science puts on a new face, the identity of its practitioners evolves accordingly. EMBO Rep. 2004, 5, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, D.J. Little Science, Big Science... and Beyond; Columbia University Press: New York, NY, USA, 1986. [Google Scholar]
- Bornmann, L.; Mutz, R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 2015, 66, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 28–37. [Google Scholar] [CrossRef]
- McGuinness, D.L.; Van Harmelen, F. OWL web ontology language overview. W3C Recomm. 2004, 10, 2004. [Google Scholar]
- Miller, E. An introduction to the resource description framework. Bull. Am. Soc. Inf. Sci. Technol. 1998, 25, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Seaborne, A.; Prud’hommeaux, E. SPARQL Query Language for RDF. W3C Recommendation, W3C. 2008. Available online: http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ (accessed on 22 January 2020).
- Shotton, D. Semantic publishing: The coming revolution in scientific journal publishing. Learn. Publ. 2009, 22, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.J.G.; McLaughlin, C.; Garcia, A. Biotea: RDFizing PubMed Central in support for the paper as an interface to the Web of Data. J. Biomed. Semant. BioMed. Cent. 2013, 4, S5. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.; Lopez, F.; Garcia, L.; Giraldo, O.; Bucheli, V.; Dumontier, M. Biotea: Semantics for Pubmed Central. PeerJ 2018, 6, e4201. [Google Scholar] [CrossRef] [Green Version]
- Weibel, S. The Dublin Core: A simple content description model for electronic resources. Bull. Am. Soc. Inf. Sci. Technol. 1997, 24, 9–11. [Google Scholar] [CrossRef]
- Huh, S. Journal Article Tag Suite 1.0: National Information Standards Organization standard of journal extensible markup language. Sci. Ed. 2014, 1, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Guha, R.V.; Brickley, D.; Macbeth, S. Schema. org: Evolution of structured data on the web. Commun. ACM 2016, 59, 44–51. [Google Scholar] [CrossRef]
- Vanclay, J.K. An evaluation of the Australian Research Council’s journal ranking. J. Inf. 2011, 5, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Sporny, M.; Longley, D.; Kellogg, G.; Lanthaler, M.; Lindström, N. JSON-LD 1.0. W3C Recomm. 2014, 16, 41. [Google Scholar]
- Bagnacani, A.; Ciancarini, P.; Di Iorio, A.; Nuzzolese, A.G.; Peroni, S.; Vitali, F. The semantic lancet project: A linked open dataset for scholarly publishing. In International Conference on Knowledge Engineering and Knowledge Management; Springer: New York, NY, USA, 2014; pp. 101–105. [Google Scholar]
- Peroni, S.; Shotton, D. The SPAR ontologies. In International Semantic Web Conference; Springer: New York, NY, USA, 2018; pp. 119–136. [Google Scholar]
- Gangemi, A.; Presutti, V.; Recupero, D.R.; Nuzzolese, A.G.; Draicchio, F.; Mongiovì, M. Semantic Web Machine Reading with FRED. Semant. Web 2017, 8, 873–893. [Google Scholar] [CrossRef]
- Jaradeh, M.Y.; Oelen, A.; Farfar, K.E.; Prinz, M.; D’Souza, J.; Kismihók, G.; Stocker, M.; Auer, S. Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge. In Proceedings of the 10th International Conference on Knowledge Capture, Marina Del Rey, CA, USA, 19–21 November 2019; pp. 243–246. [Google Scholar]
- Penev, L.; Dimitrova, M.; Senderov, V.; Zhelezov, G.; Georgiev, T.; Stoev, P.; Simov, K. OpenBiodiv: A Knowledge Graph for Literature-Extracted Linked Open Data in Biodiversity Science. Publications 2019, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Senderov, V.; Simov, K.; Franz, N.; Stoev, P.; Catapano, T.; Agosti, D.; Sautter, G.; Morris, R.A.; Penev, L. OpenBiodiv-O: Ontology of the OpenBiodiv knowledge management system. J. Biomed. Semant. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Lebo, T.; Sahoo, S.; McGuinness, D.; Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J. Prov-o: The prov ontology. W3C Recomm. 2013, 30. [Google Scholar]
- Vrandečić, D. Wikidata: A new platform for collaborative data collection. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 1063–1064. [Google Scholar]
- Dumontier, M.; Baker, C.J.; Baran, J.; Callahan, A.; Chepelev, L.; Cruz-Toledo, J.; Del Rio, N.R.; Duck, G.; Furlong, L.I.; Keath, N.; et al. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 2014, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Constantin, A.; Peroni, S.; Pettifer, S.; Shotton, D.; Vitali, F. The document components ontology (DoCO). Semant. Web 2016, 7, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, P.; Ocana, M.; Castro, L.J.G.; Das, S.; Clark, T. An open annotation ontology for science on web 3.0. J. Biomed. Semant. BioMed Cent. 2011, 2, S4. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, P.; Soiland-Reyes, S.; Belhajjame, K.; Gray, A.J.; Goble, C.; Clark, T. PAV ontology: Provenance, authoring and versioning. J. Biomed. Semant. 2013, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.J. Graph database applications and concepts with Neo4j. In Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 8–9 March 2013; Volume 2324. [Google Scholar]
- Robinson, I.; Webber, J.; Eifrem, E. Graph Databases; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013. [Google Scholar]
- Bouhali, R.; Laurent, A. Exploiting RDF open data using NoSQL graph databases. In IFIP International Conference on Artificial Intelligence Applications and Innovations; Springer: New York, NY, USA, 2015; pp. 177–190. [Google Scholar]
- Jonquet, C.; Toulet, A.; Arnaud, E.; Aubin, S.; Yeumo, E.D.; Emonet, V.; Graybeal, J.; Laporte, M.A.; Musen, M.A.; Pesce, V.; et al. AgroPortal: A vocabulary and ontology repository for agronomy. Comput. Electron. Agric. 2018, 144, 126–143. [Google Scholar] [CrossRef]
- Baker, T.; Caracciolo, C.; Doroszenko, A.; Suominen, O. GACS core: Creation of a global agricultural concept scheme. In Research Conference on Metadata and Semantics Research; Springer: New, York, NY, USA, 2016; pp. 311–316. [Google Scholar]
- Avril, P.; Bernard, É.; Corvaisier, M.; Girard, A.; Golik, W.; Nédellec, C.; Touzé, M.L.; Wacrenier, N. Analyser la production scientifique d’un département de recherche: Construction d’une ressource termino-ontologique par des documentalistes. Cahier des Tech. de l’INRA 2016, 89, 1–12. [Google Scholar]
- Buttigieg, P.L.; Morrison, N.; Smith, B.; Mungall, C.J.; Lewis, S.E.; Consortium, E. The environment ontology: Contextualising biological and biomedical entities. J. Biomed. Semant. 2013, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Dooley, D.M.; Griffiths, E.J.; Gosal, G.S.; Buttigieg, P.L.; Hoehndorf, R.; Lange, M.C.; Schriml, L.M.; Brinkman, F.S.; Hsiao, W.W. FoodOn: A harmonized food ontology to increase global food traceability, quality control and data integration. NPJ Sci. Food 2018, 2, 23. [Google Scholar] [CrossRef]
- Martini, D.; Schmitz, M.; Mietzsch, E. agroRDF as a Semantic Overlay to agroXML: A General Model for Enhancing Interoperability in Agrifood Data Standards. In Proceedings of the CIGR Conference on Sustainable Agriculture through ICT Innovation, Turin, Italy, 24–27 June 2013. [Google Scholar]
- Jackson, R.C.; Balhoff, J.P.; Douglass, E.; Harris, N.L.; Mungall, C.J.; Overton, J.A. ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinform. 2019, 20, 407. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. gplots: Various R Programming Tools for Plotting Data, R package version 3.0.1; The R Foundation: Vienna, Austria, 2016. [Google Scholar]
- Galili, T. dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 2015. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Fellows, I. Wordcloud: Word Clouds, R package version 2.6.; The R Foundation: Vienna, Austria, 2018. [Google Scholar]
- Erling, O.; Mikhailov, I. RDF Support in the Virtuoso DBMS. In Networked Knowledge-Networked Media; Springer: New York, NY, USA, 2009; pp. 7–24. [Google Scholar]
Annotation | Occurrences | Annotated Articles |
---|---|---|
PLANTS | 10,960 | 109 |
PLANT | 3656 | 112 |
STRESS | 2365 | 74 |
SOIL | 2334 | 88 |
RICE | 1883 | 65 |
EXPRESSION | 1683 | 70 |
GROWTH | 1465 | 106 |
OTHER | 1311 | 126 |
STUDY | 1286 | 118 |
GENES | 1283 | 72 |
Annotation |
---|
1-METHYLCYCLOPROPENE |
1-PROPANOL |
ABA RESPONSE |
ABSCISIC ACID METABOLISM |
ACETYLATION |
ACR2 |
BOTANICAL GARDEN |
BREAST ADENOCARCINOMA |
CHAPERONIN |
SESAME OIL |
Annotation | Annotated Classes | Average Class Depth in Hierarchy |
---|---|---|
PLANTS | 7 | 3.57 |
PLANT | 15 | 3.67 |
STRESS | 1 | 2 |
SOIL | 5 | 4.2 |
RICE | 8 | 9.25 |
EXPRESSION * | 0 | - |
GROWTH | 3 | 4 |
OTHER | 1 | 3 |
STUDY | 1 | 5 |
GENES * | 0 | - |
1-METHYLCYCLOPROPENE * | 0 | - |
1-PROPANOL * | 0 | - |
ABA RESPONSE | 1 | 7 |
ABSCISIC ACID METABOLISM | 1 | 7 |
ACETYLATION * | 0 | - |
ACR2 | 2 | 9 |
BOTANICAL GARDEN | 1 | 10 |
BREAST ADENOCARCINOMA | 1 | 9 |
CHAPERONIN | 1 | 13 |
SESAME OIL | 2 | 8 |
Ontology Prefix | Elements Used for Annotation | Total Elements | Percentage |
---|---|---|---|
http://purl.bioontology.org/ontology/NCBITAXON | 1688 | 906,780 | 0.19% |
http://taxref.mnhn.fr/lod/taxon | 1174 | 236,507 | 0.5% |
http://purl.obolibrary.org/obo/PR | 2947 | 215,546 | 1.36% |
http://purl.obolibrary.org/obo/GR_tax | 752 | 58,598 | 1.28% |
http://purl.obolibrary.org/obo/GO | 864 | 49,933 | 1.73% |
http://www.ebi.ac.uk/efo/EFO | 503 | 10,174 | 4.94% |
http://purl.obolibrary.org/obo/FOODON | 864 | 5530 | 15.62% |
http://purl.obolibrary.org/obo/SO | 270 | 4687 | 5.76% |
http://opendata.inra.fr/PO2 | 6 | 3477 | 0.17% |
http://opendata.inra.fr/PO2_DG | 969 | 3465 | 28% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Navarro, F.; Bernabé-Diaz, J.A.; García-Castro, A.; Fernandez-Breis, J.T. Semantic Publication of Agricultural Scientific Literature Using Property Graphs. Appl. Sci. 2020, 10, 861. https://doi.org/10.3390/app10030861
Abad-Navarro F, Bernabé-Diaz JA, García-Castro A, Fernandez-Breis JT. Semantic Publication of Agricultural Scientific Literature Using Property Graphs. Applied Sciences. 2020; 10(3):861. https://doi.org/10.3390/app10030861
Chicago/Turabian StyleAbad-Navarro, Francisco, José Antonio Bernabé-Diaz, Alexander García-Castro, and Jesualdo Tomás Fernandez-Breis. 2020. "Semantic Publication of Agricultural Scientific Literature Using Property Graphs" Applied Sciences 10, no. 3: 861. https://doi.org/10.3390/app10030861
APA StyleAbad-Navarro, F., Bernabé-Diaz, J. A., García-Castro, A., & Fernandez-Breis, J. T. (2020). Semantic Publication of Agricultural Scientific Literature Using Property Graphs. Applied Sciences, 10(3), 861. https://doi.org/10.3390/app10030861